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Abstract

“Is one’s entire psyche’s most secret landscape really a fairly public thing, given just a
few pieces of information?” – Douglas R. Hofstadter

This is a thesis about recommender systems, and the different approaches recommender systems
use to solve the information overload problem. Our focus lies on two common approaches, collab-
orative filtering and content based filtering. Both of these approaches have their weaknesses and
strengths. To overcome the weaknesses of each approach, various hybrid filters have been developed.
We will start by analyzing these three approaches based on previous research literature and will then
proceed to implement different variants of these approaches, including our own filtering approach
for the movie domain. These implementations will be done in Java and open sourced for further
development by other researchers in this area. The results will be evaluated and compared against
previous research in this area in order to validate our implementations. Evaluation will be done by
using standard metrics that are commonly used for evaluating the accuracy of recommender systems.

Various algorithms from the machine learning community have been used in the effort to improve
and solve some of the problems in the previously mentioned approaches. We will concentrate on one
such algorithm, Kohonen’s self-organizing map algorithm. The self-organizing map algorithm is an
unsupervised learning algorithm which we believe is suitable for recommender systems in the movie
domain. Our implementation of this algorithm will be used together with collaborative filtering
approaches in the effort of designing a recommender system for movies. The result of this approach
will be evaluated and compared against the results from our previous implementations and discussed
in the context of previous results from the recommender systems research community.

Evaluating the effectiveness of recommender systems is often done by analyzing the accuracy of the
recommendations produced by the techniques used to implement the different approaches. However,
the goal for a recommender system is not only to give accurate recommendations but also to conceive
to the user trust and encourage the user to explore the recommendations. This is more of an interface
issue than an algorithmic issue, we have chosen to call this the recommendation interface problem.
Similar conclusions have been drawn by other researchers and different attempts to solve this has
been done. We will summarize and discuss proposed solutions. We will introduce and describe what
we call visual recommendations, and show how this approach solves the recommendation interface
problem by creating a visual recommender system called MOVSOM.

The testing and evaluation will be done on the well used MovieLens dataset, as well on a larger
dataset taken from an e-commerce site selling DVDs, together with movie attributes provided by the
IMDb.

Our empirical evaluation results shows that MOVSOM produces recommendations of movies
that are comparable to state of the art techniques and with the combination of our solution to the
recommendation interface problem we believe that this approach has a very promising future as a
recommender system for movies.

“I love deadlines. I like the whooshing sound they make as they fly by.” – Douglas Adams
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Introduction

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not
’Eureka!’ (I found it!) but ’That’s funny...”’ – Isaac Asimov

Recommender systems are one solution to the information overload problem. Other solutions can for
example be found in the field of information retrieval and information filtering, where search engines
like Google and various text-retrieval applications are successful applications developed to deal with the
problem. Recommender systems emerged as an independent research area around the mid 90’s and has
since then become a broad research topic with substantial integration of machine learning and information
filtering. E-commerce sites use recommender systems for making recommendations that are tailored to
a user’s preferences while at the same time increasing their own sales. Although recommendations can
be non-personalized, like ”customers who bought this item also bought these items” or popularity based,
e.g. top lists, resulting in the same recommendations to all customers, recommender systems try to make
recommendations as personalized as possible.

The main goal for a recommender system is to provide the user with recommendations that reflect
the user’s personal taste and to convince the user to trust and explore the given recommendations.
Applications of this has been successfully used on the Internet by e-commerce sites like Amazon.com,
that offers millions of products to its customers, and by communities in the entertainment domain like
MovieLens1, a research project that runs a website where people can become members and receive
recommendations for movies.

Recommender systems that make personal recommendations achieve their goal by maintaining profiles
for the users that consists of their preferences. The profiles are used as filters, only items that match
user’s preferences will slip through and be presented as recommendations. Depending on the domain,
items can be books, movies, WebPages, Usenet news articles, etc.

Throughout the text we will be referring to the user that gets a recommendation as the active user
and the item that is recommended as the active item.

Two main filtering approaches for making personalized recommendations that have emerged over the
years are collaborative filtering (CF) and content based filtering (CBF). CF uses the opinions of other
users, that are similar to the active user, as a filter. CBF only uses the preferences of the active user as
a filter. In this thesis we will try out different established techniques that use both of the approaches, as
well as some techniques suggested by ourselves. We will for example develop our own CBF for the movie
domain where movies will be represented with attributes such as directors, actors, genres, etc. Movies
will be matched against movies in a user’s profile, where similarity is taken as a linear combination over
the attributes, and the movies with highest similarity will be recommended.

The CF and CBF approach both have their weaknesses and strengths. With knowledge of issues
related to one approach that aren’t present in the other, research has been done on how to best combine
these two approaches into hybrid filters.

Different methods have been tried to combine the two approaches into new techniques, many taken
from the field of artificial intelligence. We will use a technique from the field of artificial neural networks
called Kohonen’s self-organizing map (SOM). The SOM is a mapping from high dimensional data onto
e.g. a two dimensional grid, that preserves the neighborhoods of the original data. This allows us to
cluster and form neighborhoods of users and items on large two dimensional maps. A user map will be
used in combination with CF, i.e. users in the active users neighborhood on the map will be used as
recommenders for the active user. An item map will be used in combination with CBF, i.e. movies that

1http://movielens.umn.edu/
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are similar to the movies in the active user’s profile will be recommended to the user. Additionally a
heuristic goodness function will be used that based on the recommendations from each map weights how
safe and serendipitous the recommendations are.

We believe that a good recommender system should be able to give recommendations that are new,
unexpected, trust inspiring and somewhat transparent, so that the users can see the logic behind why a
particular item was recommended. To show the logic behind a recommendation we will show the users
the maps produced by the SOM algorithm. We believe that if a user can zoom in on the recommenders
profiles and the recommended movie’s neighborhood, then this will be a sufficient explanation for why
the recommendation was made.

Contributions

The main objective of this thesis is to evaluate the usability of Kohonen’s SOM in the construction of a
recommender system for movies. The reason for this is two-fold; some previously known problems with
content based filtering and collaborative filtering can be solved, and secondly, the visualization ability
allows the motivations behind recommendations to be made transparent to the users in a very simply
and intuitive manner.

Our contributions are:

1. We will release new datasets2 that can be used for testing recommender systems based on trans-
action data, rating data and attribute data.

2. We will give a detailed analyzis of the datasets we provide.

3. We will configure the MovieLens dataset so it can be used together with IMDb attribute data.

4. We will release a recommendation technique ”framework”3 in Java that can be used by others to
test their similarity and prediction algorithms.

5. We will implement common recommendation techniques and provide detailed evaluations on clearly
described comparable evaluation datasets.

6. We will implement our own public experimental recommender system4 for movies based on the
SOM, with focus on visual recommendations and new ways for users to explore recommendations.

Outline

In Part I, the first chapter ”Historical development and related work” surveys the historical development
that resulted in today’s recommender systems by going through and presenting related work. Issues
related to recommender systems will be discussed in the context of others research. The chapter ends
with a presentation of a few well known recommender systems. In the next chapter ”Implementation
and evaluation of common recommendation techniques” we present and evaluate implementations of
common recommendation techniques, as well as a few variations of our own. We provide a thorough
statistical analysis of the data we use for evaluation. We provide a detailed explanation of various
common evaluation metrics used for evaluating recommender systems, and we discuss how we are going
to use them to evaluate the recommendation techniques we have implemented. We end this part with a
presentation of the results from the evaluations.

Part II begins with the chapter ”Artificial neural networks”, which serves as an introduction to the
field. Commonly used learning algorithms will be discussed as well as different neural networks. The
chapter ends with a brief historical survey of the field of artificial neural networks. This is followed by the
chapter ”Self-Organizing Maps” where we introduce Kohonen’s SOM algorithm both as a biologically
inspired algorithm and as a clustering and projection algorithm. Its visualization capabilities will be
discussed as well as some other related issues regarding the SOM. The chapter ends with a presentation

2Datasets used in this thesis are available for download from http://rslab.movsom.com/data/.
3Our recommendation technique ”framework” which is used for the evaluations in this thesis is available for download

from http://rslab.movsom.com/tools/rslab/, it includes all of the recommendation techniques described in this thesis.
4Our public experimental recommender system MOVSOM can be found at http://www.movsom.com/.
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of some related work in the area of using the SOM in the recommendation process. In the final chapter
of Part II, with the title ”Implementation and evaluation of SOM based recommendation techniques” we
will implement and evaluate a few recommendation techniques based on the SOM.

Some of these techniques from Part II will be used again in Part III which begins with the chapter
”Trust in recommender systems” in which we will discuss the design and trust issues regarding rec-
ommender systems by presenting some results from the literature as well as our own solutions to these
issues. This is followed by a chapter on what we refere to as ”Visual recommendations”. Finally we come
to the last chapter entitled ”MOVSOM - State of the art” where we describe the implementation of a
experimental recommender system called MOVSOM. MOVSOM relies heavily on visualizing important
aspects of the recommendation process and by that conceiving to the user trust and encouraging the
user to explore the recommendations further. MOVSOM uses the topological ordering property of the
SOM as well as its clustering and projection capabilities, which are implemented and evaluated in Part
II. The benefits of MOVSOM will be discussed and a few similar web-based solutions in other domains
will also be examined and presented. Ideas for future work on the MOVSOM will then be presented. In
the end we conclude.
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Part I

Recommender Systems

“Those people who think they know
everything are a great annoyance

to those of us who do.”
– Isaac Asimov

This part consists of two chapters. The first is theoretical, in which necessary concepts are explained
regarding the field of recommender systems. We begin by presenting the development of the field, from
its roots in information retrieval to where it is today, a field of its own, influenced by many other.
Historical important events and work done by others are presented. A detailed analysis of various
recommendation techniques are given and a brief discussion of problems and challenges regarding some
of these techniques are presented. The chapter ends with a presentation of some well known websites
and how they use recommender systems on their sites.

In chapter two, recommendation techniques that we have chosen to implement are evaluated and the
results discussed. Different measures for evaluating recommender systems are presented and used. All
recommendation techniques are presented in clearly written pseudo code.
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Chapter 1

Historical development and related
work

“I have had my results for a long time: but I do not yet know how I am to arrive at them.”
– Karl Friedrich Gauß

In 2003 a study was conducted [Lyman et al., 2003] that tried to estimate how much new information
is created each year. The conclusion was that the world produces between 1 and 2 exabytes of unique
information each year, roughly about 250 megabytes for each human being. This amount of information
affects most of us in our daily life as we constantly find ourselves overwhelmed by it in many different
forms. Think of all TV programs there are to choose among. Which news stories are worth paying
attention to? Look at all the new email that keeps on arriving to the inbox? Which restaurant to eat
lunch at? And what to eat at the restaurant? Which is the right gift? Which is the right movie to rent?
What book, cd or movie to buy from Amazon? A commonly used term for these problems is information
overload, something that will happen to all of us sooner or later.

Since ninety-two percent of all the information is stored on magnetic media, primarily hard disks,
the research and development of computerized tools for storing, organizing and searching information is
highly needed, and indeed, in the field of information retrieval and information filtering, this has been
an issue of interest for more than half a century. Applications have been developed in both fields that
are suited for different data domains. In the field of information retrieval applications such as search
engines for the Web and text-retrieval applications that searches large text-document collections have
been developed. In the field of information filtering we have spam filters that filters incoming mail
and makes sure no unwanted mail arrives in our mailbox. And from both fields we have recommender
systems that retrieve and filter information by figuring out what our needs are, and uses this knowledge
to recommend the information that we will probably have most use of.

1.1 Information Retrieval

One definition of information retrieval can be found in the book ”Information retrieval” by Rijsbergen
[Van Rijsbergen, 1979]

”An information retrieval system does not inform (i.e. change the knowledge of) the
user on the subject of his inquiry. It merely informs on the existence (or non-existence) and
whereabouts of documents relating to his request.”

In its basic form, information retrieval is concerned with finding text-documents that match some
search criteria. In a typical information retrieval system the user types in a few keywords, a search query,
that best describe the wanted information, the information retrieval system then finds this information
by matching the keywords against the contents of information stored as textual data. Examples of
information retrieval systems are web search engines like Google [Brin and Page, 1998] that matches
search queries against the textual contents of web documents, and returns the documents that best
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match the keywords, usually sorted according to how much they overlap with the search query and
by their link structure. Text and document retrieval applications are by far the most popular use of
information retrieval systems. One drawback with the query style for retrieving information is that the
users have to type in a new question every time they want to know if new information is available for a
subject of interest.

Pioneering work on this matter was done in the late 50’s by H.P. Luhn, who was the first to automate
the process of information retrieval. The purpose of his work was to make it easier for readers of technical
literature to quickly and accurately identify the topic of a paper. This was done by first making the
documents machine-readable, using punch-cards, and then using statistical software to calculate word
frequencies in order to find significant words and sentences that could be used for abstract creation
[Luhn, 1958a]. In his paper ”A Business Intelligence System” [Luhn, 1958b], he also describes a system
that manages user profiles that consists of the users interests coded as keywords. The system retrieves
and stores information that matches the user profile by comparing the user profile against a database of
documents. This approach is similar to what later on will be referred to as information filtering.

Beginning in the 1960’s a lot of research was done in the field of information retrieval. One of the
major researchers in this field was Gerald Salton, who was the lead researcher of a project called the
SMART information retrieval system [Salton, 1971]. Important concepts like the vector space model,
term-weighting and relevance feedback was introduced and developed as a part of this research. The
system itself was an experimental text-retrieval application that allowed researchers to experiment and
evaluate new approaches in information retrieval. The applications that were developed during these
years were proven to perform well on relatively small text collections (on the order of thousands of
documents) but whether or not they would scale to larger text collections wasn’t clear until after the
Text REtrieval Conference (TREC)1 in 1992. The purpose of TREC was to support research within the
information retrieval community by providing the infrastructure necessary for large-scale evaluation of
text retrieval methodologies. TREC resulted in large text collections being made available for researchers.
TREC is co-sponsored by the National Institute of Standards and Technology and U.S. Department of
Defence and is now an yearly event. With the distribution of a gigabyte of text with hundreds of queries,
the performance of the retrieval systems could now be judged by their actual performance. New and
improved applications could, thanks to this, be developed that were suitable for large text collections.
For example, in the early days of the Web, searching the Web was done by using algorithms that had
been developed for searching large text collections [Singhal, 2001].

The field of information retrieval is still even after nearly fifty years of research a very active and im-
portant research field due to the increasing amount of information being generated - not in the least due
to the introduction of the World Wide Web in the beginning of the 1990’s. The research area has gone
from its primary goal of indexing text and searching for useful documents in text collections to include
research on modelling, document classification and categorization, systems architecture, user interfaces,
data visualization, filtering, language analysis, etc. Some modern applications of information retrieval
are search-engines, bibliographic systems and digital libraries. See for example the book ”Modern In-
formation Retrieval” [Baeza-Yates and Ribeiro-Neto, 1999] for a overview of the research in information
retrieval with a focus on the algorithms and techniques used in information retrieval systems.

1.2 Information Filtering

Today’s recommender systems have their origin in the field of information filtering, a term coined in
1982 by Peter J. Denning in his ACM president’s letter titled ”Electronic junk” [Denning, 1982]. In the
paper Denning writes that:

”The visibility of personal computers, individual workstations, and local area networks has
focused most of the attention on generating information – the process of producing documents
and disseminating them. It is now time to focus more attention on receiving information–
the process of controlling and filtering information that reaches the persons who must use it.”

Dennings describes one approach for how to deal with the problem of filtering information being received,
called content filters. He describes content filters as a process by which for example the contents of emails

1http://trec.nist.gov/

7

http://trec.nist.gov/


are scanned in order to decide what to do with them; discard them or forward them. He ends the letter
with a open request that something must be done about the growing problem of how to handle the
quantity of information that we produce.

The 1970’s was a big decade when it came to databases, which in combination with the falling prices
of storage space led to an increasing amount of digital information being available in the 80’s. There
was also an increasing availability of computers as well as an increasing usage of computer networks to
disseminate information. It was probably the beginning of these trends that Dennings had observed and
which led to his request for more effective filtering techniques. As a result, there was an increased activity
in the research of filtering systems during the 80’s and several papers were published on the subject, the
paper by Malone et al. [Malone et al., 1987] published in 1987 being one of the more influential ones.
Their paper discusses three paradigms for information filtering called cognitive, economic and social.
Their definition of cognitive filtering is equivalent to the content filter defined by Dennings and is now
commonly referred to as content based filtering. Economic filtering is based on the fact that a user
often has to make a cost-versus-value decision when it comes to processing information, e.g. ”is it worth
my time to read this document or email”. Social filtering is defined as a process where users annotate
documents they have read and where the annotations are then used to represent the documents. Users
decide, based on the annotations, if the documents are worth reading. They thought that, if practical,
this approach could be used on items regardless of whether or not the contents of the item can be
represented in a way suitable for content filtering.

In November 1991, Bellcore hosted a Workshop on High Performance Information Filtering. The
workshop brought together researchers with interests in the creation of large-scaled personalized in-
formation delivery systems and covered various aspects of this area and its relation to information
retrieval. The workshop resulted in a special issue on information filtering in Communications of
the ACM [Cohen, 1992]. One of the articles in the special issue was written by Belkin and Croft
[Belkin and Croft, 1992], in it they discuss the difference between information filtering and information
retrieval. They come to the conclusion that both techniques are very similar on an abstract level and
has the same goal, i.e. to provide relevant information to the user, but define some differences that are
significant for information systems; filter systems are suitable for long-termed user-profiles on dynamical
data whereas retrieval systems are suitable for short-termed user profiles on static data. The traditional
way of retrieving information is to ask a query (short-termed) that is matched against available informa-
tion. A system can however also build up a user profile (long-termed) which is used in connection with
every query, this means that personalization can be done, each answer is adjusted to the users prefer-
ences as well as the actual query. The other articles in the special issue give examples for applications
of information filtering and extensions to information retrieval.

1.3 Collaborative Filtering

“Remember to always be yourself. Unless you suck.” – Joss Whedon

One article [Goldberg et al., 1992] in the special issue on information filtering in Communications of the
ACM [Cohen, 1992] took a different approach to information filtering. They implemented their own
version of social filtering in a system called Tapestry. Tapestry allowed a small community of users to
add annotations such as ratings and text comments to documents they had read. Users could then create
queries like ”receive all documents that Giles likes”. The system relied on the users all knowing each
other, so that users could judge from a personal basis or by reputation if the reviewer of a document was
trustworthy or not. Two major drawbacks with the system was that it did not scale well to larger user
groups (as everybody had to know each other), and the filtering process had to be done manually by
the users (the formulation of specific queries). They chose to call their approach collaborative filtering,
which also became the name for a new direction in the research area of information filtering.

The new research direction resulted in further research into collaborative filtering, and the de-
velopment of new collaborative filtering systems, where GroupLens [Resnick et al., 1994] for Usenet
News, Ringo [Shardanand and Maes, 1995] for music and video@bellacore [Hill et al., 1995] for movies
are among the more notable ones. The main contributions of these new systems were to automate the
filtering process of Tapestry and make it more scaleable. By letting users be represented by their ratings
on items, the systems could automatically find other users that had a similar type of rating behavior
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as the active user. Users with similar rating behavior could then become recommenders for the active
user on items they had rated and which the active user hadn’t rated. This approach was based on the
heuristic that users that have agreed in the past probably will agree in the future. As users were no longer
required to all know each other the former scalability issue of Tapestry was solved. In other words, the
users that were found similar to you would take on the same role as the trusted well-known reviewer in
the Tapestry system, with the difference that now you didn’t know who the reviewers were, the trust
was instead put on the system to find them.

Motivated by the research done into collaborative filtering since the 1991 workshop where Tapestry
was presented, a new workshop was held in 1996 by Berkley, this time the topic was collaborative filtering.
The workshop resulted in a special March issue of 1997’s Communications of the ACM [Crawford, 1997],
covering the new research into collaborative filtering. It was this year that collaborative filtering got
its real major breakthrough in the research community at large and the term recommender system got
coined.

While the automated collaborative filtering systems had solved the scalability issue of Tapestry, now
allowing a theoretically unlimited number of users that didn’t need to know each other, a new scalability
issue had manifested. The increasing number of users required an increasing amount of memory and
computation time. Breese suggested in [Breese et al., 1998] a model based approach to CF, and therefore
decided to divide CF techniques into two classes, memory based collaborative filtering and model based
collaborative filtering.

Memory based collaborative filtering techniques were to correspond to the earlier automated CF
techniques that required that the entire database of user’s ratings on items was kept in memory during
the recommendation process. Since the entire rating database is kept in memory, new ratings can
immediately be taken into account as they become available. Recommendations for the active user
can be produced using variations of nearest neighbor algorithms, memory based CF is for this reason
sometimes referred to as neighborhood based CF. These algorithms utilize the whole rating database,
to find neighbors to the active user, by calculating similarity between the active user and all the other
users in the rating database based on how they have rated items. Users that are found to be similar to
the active user are then used as recommenders in the recommendation process. The major drawback
with memory based CF techniques is as already noted that they tend to scale very poorly, larger rating
databases require more memory and more calculations which slow down the recommendation process.

Model based collaborative filtering techniques, Breese suggested, will on the other hand only use the
rating database to construct a model (hence the name) that can be used to make recommendations.
The construction of such a model is primarily based on the rating database, however once the model
is created the rating database is no longer needed. It is thus not necessary to keep the huge rating
database in memory, which typically should improve the performance and scalability issues. But since it
is just a model, it may (depending on the model) be necessary to reconstruct it as more ratings become
available in order to accurately model the relations of users and items in the rating database. The need
to reconstruct the model can be a significant drawback with this approach.

Breese proposes in [Breese et al., 1998] a probabilistic perspective to model based CF, where calcu-
lating the predicted value pu,i for an item i for the active user u can be viewed as calculating the active
user’s expected rating ru,i on the active item, given what we know about the active user. The information
available about the active user is the set ur of all ratings given by active user. Assuming ratings to be
in the interval [Rmin, Rmax] the following formula could then be used to calculate the predicted value:

pu,i = E (ru,i) =
Rmax∑

v=Rmin

[v × P (ru,i = v|ur)] (1.1)

Where P is the conditional probability that the active user will give the active item a particular rating.
To estimate the probability P , Breese proposes two alternative probabilistic models: Bayesian Networks,
where each item is represented as a node in a network and the states of the nodes correspond to the
possible ratings for each item; and Bayesian clustering where the idea is that there are certain groups
or types of users capturing a common set of preferences and tastes, as such user clusters are formed,
and the probability that the active user belongs to each of them is estimated, using the estimated class
membership probabilities predictions can be calculated.
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Several other probabilistic models have been proposed in the literature, some more advanced than
others, such as the work of [Shani et al., 2002] where they see the recommendation process as a sequential
decision process and proposes the use of Markov decision chains to create a model. However, they
don’t report any better accuracy than the models proposed by Breese. Many other non-probabilistic
model based CF techniques have been suggested, such as the machine learning techniques found in
[Billsus and Pazzani, 1998], where artificial neural networks are used together with feature extraction
techniques like singular value decomposition to build prediction models. They claim a slightly better
result than the correlation based techniques proposed earlier by e.g. GroupLens [Resnick et al., 1994].

In 1999 Herlocker and others [Herlocker et al., 1999] summarizes what can be referred to as the state
of the art of CF. The automated CF problem space is formulated as predicting how well a user will like an
item that the user has not yet rated given the ratings for a community of users. An alternative problem
space definition is also given where users and items are represented as a matrix where the cells consist
of ratings given by the users on the items, the collaborative filtering recommendation problem can then
be formulated as predicting the missing ratings in the user item rating matrix [Figure 1.1]. The most
prevalent algorithms used by collaborative filtering techniques are considered to be neighborhood based
(which is still true). A framework for performing collaborative filtering using neighborhood based meth-
ods is presented and discussed in detail. An important and still widely used extension to neighborhood
based collaborative filtering methods called significance weighting is introduced, where the similarity
between users is down weighted according to number of co-rated items.

An alternative approach to collaborative filtering is proposed in [Sarwar et al., 2001] where the rela-
tionship between items, instead of users, is used. Sarwar et. al developed a new technique that they chose
to call item based collaborative filtering, in contrast to the techniques described by [Herlocker et al., 1999]
which they refer to as user based collaborative filtering. Recommendations are based on what the active
user thinks of items similar to the active item, instead of what the neighbors of the active user thinks
of the active item [Figure 1.2]. The similarity between items is essentially based on the heuristic that a
person’s opinion on two items that are similar doesn’t vary much.

Many may consider [Sarwar et al., 2001] to be the first time an item based CF technique is described in
a public paper, however as early as 1995 a similar approach was described in [Shardanand and Maes, 1995]
in form of what they called the artist artist algorithm, where they used the similarities between artists
to make recommendations. The artist similarities were based on user ratings. However, they reported
worse results compared to their other user based algorithm. No references is made to the scalability
problem so this was probably just a test to see how well the approach stood up to their user based CF
technique

A few years later in the paper [Linden et al., 2003] a description is given of the CF technique used
byAmazon2, who also holds a patent for the technique they use. A brief and not very detailed description
of an item based CF technique that reminds a lot of the one described in [Sarwar et al., 2001] is given.

The technique presented in [Sarwar et al., 2001] has been further extended in [Deshpande and Karypis, 2004]
for top n item recommendations. They propose an alternative algorithm called item set to item CF where
the difference lies in that the item similarity is computed between a single item and a set of items instead
of between two single items.

The empirical results for item based CF shown in [Sarwar et al., 2001] show that a model that only
uses the 25 most similar items for each item will produce recommendations that are nearly 96% correct
compared to a full model that uses all item similarities. Both [Sarwar et al., 2001] and [Deshpande and Karypis, 2004]
show comparable results against user based CF, but with a much faster computation time and no scal-
ability problems in relation to the size of the user item rating matrix, allowing for better scalability to
systems with millions of users and items.

1.3.1 Recommendation techniques

Two prevalent techniques based on the CF recommendation approach that have emerged over the years
are user based CF as described in [Resnick et al., 1994], [Shardanand and Maes, 1995], [Herlocker et al., 1999]
and item based CF as described in [Shardanand and Maes, 1995], [Sarwar et al., 2001], [Linden et al., 2003],
[Deshpande and Karypis, 2004]. While both techniques rely on the CF approach where a large group of
users ratings are used as a basis to make recommendations, the techniques implement the CF approach

2http://www.amazon.com/
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The Thing Land of the Dead Magnolia Kill Bill
Giles 5 4 1 ?
Buffy 5 5 - 5
Spike 5 1 - 1

Snyder 3 3 4 -

Figure 1.1: User item rating matrix where items are movies and cells thus consists of user ratings on
movies. Shadowed cells shows which ratings are used when comparing Giles’s row of ratings to Buffy’s
row of ratings. Only movies rated by both users can be considered.

in two very distinct ways. The names of the techniques vary greatly among papers (user based, user to
user, neighborhood based, sometimes more specific such as artist to artist etc.), in this paper we have
chosen to use the names user based CF and item based CF based on the historical development of CF
and the distinctions necessary to make and will use them throughout this paper.

User based Collaborative Filtering

User based CF is a memory based technique for making recommendations where the main task is to find
users that are similar to an active user. The users similar to the active user, usually referred to as the
active user’s neighbors, are used as recommenders for the active user in the recommendation process.

In [Herlocker et al., 1999] a framework is presented for performing user based CF (referred to as
neighborhood based CF in the paper). The framework presented by Herlocker assumes users have been
represented using their ratings on items, and instead focuses on the neighborhood formation and the
prediction computation. Herlocker’s framework, with additional explanations is as follows:

1. Weigh all users with respect to their similarity with the active user. Define a similarity function
similarity(u, n) that measures the similarity between the active user u and a neighbor n (since
user’s are represented using their ratings profiles consisting of ratings on items, similarity is com-
puted based on the users rating profiles). The more similar a neighbor is to the active user, the
more weight is put on his influence on the final recommendation. One should observe that the
introduction of a similarity measure as a weight value is an heuristic artifact that is used only for
the purpose of differentiating between levels of user similarity and at the same time to simplify the
rating estimation. Any similarity function can be used as long as the calculation is normalized (i.e.
similarities lie in a expected interval, which typically is [0, 1] or [−1, 1]).

2. Select a subset of users to use as recommenders. The subset of users (the relevant neighbors of
the active user) can be selected in many different ways. Simple ways for selecting neighbors is to
choose those that have a similarity above a fixed threshold value, or to choose the k most similar
users according to calculated similarity or according to number of commonly rated items. While
theoretically all users could be used given that similarities have been calculated, selection of a
subset is often necessary practically. For example, similarities may be so unreliable that using a
subset of the most trusted similarities is highly necessary to get good recommendations.

3. Compute predictions using a weighted combination of selected neighbors’ ratings. The predicted
value pa,i for the active item i that the active user u has not yet rated is computed as an aggregation
of the rating of each neighbor n for the same item i, i.e. pu,i = aggr(rn,i).

The user based CF recommendation technique and the proposed more detailed framework thus leaves
open the selection of similarity measure, the method for forming neighborhoods and the definition of
the aggr(rn,i) function for making predictions. Much research has been done on possible ways of imple-
menting and varying these parts of the user based CF technique.

In general the problem solved by the user based CF technique can be defined as predicting the missing
values in a (typically very large and very sparse) user item rating matrix [Herlocker et al., 1999], where
each row represents a user and each column represents an item. For example the user item rating matrix
given in [Figure 1.1] shows that Giles hasn’t seen the movie Kill Bill.

Whom of the other users should Giles trust to make the recommendation? By studying how well
Giles’s row of ratings in the matrix matches Buffy’s, Spike’s and Snyder’s row respectively, it can be
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The Thing Land of the Dead Magnolia Kill Bill
Giles 5 4 1 ?
Buffy 5 5 - 5
Spike 5 1 - 1

Snyder 3 3 4 -

Figure 1.2: User item rating matrix where items are movies and cells thus consists of user ratings on
movies. Shadowed cells shows which ratings are used when comparing the movie Land of the Dead’s
column of ratings to the movie Kill Bill’s column of ratings, only ratings by users that have rated both
movies are considered.

determined who should be trusted, and even to which degree they can be trusted. Trust is in this case
simply based on the heuristic that users that have agreed in the past probably will agree in the future, as
such Buffy, who’s row of ratings is most similar to Giles’s row of ratings, should be trusted the most.
Spike is difficult to trust as he agrees and disagrees sometimes, and Snyder can’t be trusted at all, which
doesn’t matter however as Snyder hasn’t seen Kill Bill and thus can’t predict on it for Giles.

Item based Collaborative Filtering

Item based collaborative filtering is a model based technique for making recommendations where the
main task is to find items that are similar to an active item. The populations ratings on items is used to
determine item similarity. Recommendations are formed by considering the active users ratings on items
similar to the active item, usually refered to as the active items neighbors (to be clear, the neighbors in
item based CF are items, not users). It is assumed that items have been represented using the users’
ratings on the items. The recommendation technique then consists of the following three major steps:

1. Weigh all items with respect to their similarity to the active item. Define a similarity function
similarity(i, j) that meassures the similarity between the active item i and another item j (since
item’s are represented using rating profiles consisting of users ratings on the item in question, the
similarity is computed based on the items rating profiles).

2. Form the active item’s neighborhood of similar items. The neighborhood can either be such that it
consists of the most similar items out of all items, independent of wheter the active user has rated
them or not, or it can be the set of the most similar items out of those the active user has rated.
Typically only a subset of the k most similar items are selected.

3. Compute a prediction on the active item for the active user using a prediction algorithm that is
based on how the active user has rated items in the active item’s neighborhood.

The main motivation behind this approach is to overcome some of the problems with scalability and
computational performance that are symptomatic for user based CF.

Similar to user based CF the item based CF technique can be defined as predicting the missing values
in a user item rating matrix. In [Sarwar et al., 2001] it is proposed that the relations between columns in
a user item rating matrix should be considered. Thus, while the problem space is still that of predicting
the missing values in a user item rating matrix as defined in [Herlocker et al., 1999], relations between
items instead of users is now considered. For example the user item rating matrix given in [Figure 1.2]
shows that Giles hasn’t seen Kill Bill.

When predicting the missing rating on Kill Bill for Giles in this case, the prediction will be based
on what Giles thinks of movies that are similar to Kill Bill. The similarity between movies is found
by matching the column vector of Kill Bill against the column vector of the other three movies. The
similarity between items is essentially based on the heuristic that a persons opinion on items that are
similar doesn’t vary much. As such, since ratings on Kill Bill and Land of the Dead varies the least,
among users that have rated both movies, they can be considered similar (and I think we can all agree
that both movies have a lot of death, serendipity!). Since Giles thought Land of the Dead was a 4 that
might thus be a suitable prediction on Kill Bill for Giles.
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The Thing Grudge Andrey Rublyvov Fargo Magnolia
Giles 5 5 1 2 1
Spike 1 2 1 2 2

Figure 1.3: User item rating matrix consisting of two users. Note that when Giles rates something highly
(5), Spike gives the same item a low rating (1 or 2). But when Spike gives an item a low rating (1 or
2) there’s no pattern for how Giles will rate the same item. The users have a low linear correlation, as
such their influence on each other will be low despite the fact Giles might be a good negative predictor
for Spike.

1.3.2 Similarity measures

Prevalent throughout the research into collaborative filtering has been the study of similarity measures
to use to determine user (and item) similarities. The two most popular types of similarity measures
are correlation based and cosine based. In [Resnick et al., 1994] they suggested the use of the Pearson
correlation coefficient as a correlation based similarity measure. [Breese et al., 1998] compared recom-
mendation techniques using the Pearson correlation coefficient and the cosine angle between vectors as
similarity measures, the recommendation technique using the Pearson correlation coefficient was found
to perform better. The Ringo system [Shardanand and Maes, 1995] made use of the mean squared differ-
ence and a constrained version of the Pearson correlation to measure the similarity between two users.
Their results show that the constrained Pearson performs better compared to the Pearson correlation
coefficient and the mean squared difference.

In [Billsus and Pazzani, 1998] some important issues regarding (linear) correlation-based approaches
are discussed, which we refer to as the reliability, generalization and transitivity issues.

Reliability The correlation between two users is calculated only over items both have rated. Since
users can choose among thousands of items to rate, it is likely that the overlap between most users
will be small. This has the effect that the use of the correlation coefficient between two users as a
similarity measure is in many cases unreliable. For example, correlations based on three items has
as much influence in the final prediction as a correlation based on thirty items. It is thus important
to somehow take into account the number of items involved in the correlation, a popular solution
to this is the usage of significance weighting [Herlocker et al., 1999].

Generalization The correlation based methods typically uses a generalized global model of similarity
between users, rather than separate specific models for classes of ratings. For example, referring
to [Figure 1.3] where a rating scale of 1 to 5 is used, we see that the two users agree on two movies
and disagree on the remaining movies.

The correlation between the two users is near zero, so they would have little influence on each
other in the recommendation process. It would though be conceivable to interpret positive ratings
of Giles as perfect negatives for Spike. This fact, and many similar such cases, is however completely
ignored with the correlation approach as it uses a model that is too generalized.

Transitivity Since two users can only be regarded as similar if they have items that overlap, this has the
effect that users with no overlap are regarded as dissimilar in the correlation approach. However,
just because two users have no overlap, doesn’t necessarily mean that they are not like-minded.
Can such like-mindedness still be detected? Consider the following example; user A correlates with
user B; user B correlates with user C; since user A has no items in common with user B the
two do not correlate. But one thing they do have in common is their similarity with user B, i.e.
A→ B ← C, and this information could be used to establish a similarity between users A and C.

Different ways of improving and extending primarily the correlation based similarity measures have been
developed, some of the more widely known and used are the ones proposed by Breese [Breese et al., 1998]
and Herlocker [Herlocker, 2000]. Breese suggests three different extensions, default voting, inverse user
frequency and case amplification. Herlocker suggests the use of significance weighting.

Default voting Since the reliability of the correlation between two users increases with the number of
items that are used for calculating the correlation, few co-rated items means that the reliability of
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the similarity is questionable. Instead of only using co-rated items, Breese suggests that the union
over all items that two user have rated should be used. For each item in the union where one of
the two users has a missing rating, a default rating is inserted. Breese suggests that the default
value should be a neutral rating or a somewhat negative preference for the unrated item. It is
important to realize that the basic idea of default voting only applies to the union of items rated
by both users in question. However, they also suggest that a default value can be added to some
additional items that neither one of the two user have rated but that they might have in common.

Inverse user frequency The extension is based on the idea that universally liked items are not as useful
in capturing similarity as less common ones. Inverse user frequency for an item is calculated by
taking the logarithm of the ratio between the total number of users and how many that have rated
the item. This is analogous to the inverse document frequency typically used in information retrieval
to reduce influence of common words when calculating document vector similarity. The ratings for
each item is then multiplied by their calculated inverse user frequency when calculating similarity
between users’s rating vectors (this would not be suitable for correlation based approaches).

Case amplification Refers to a transform applied to the similarity. Positive similarities will be em-
phasized while negative will be punished. Breese uses a formula where positive similarities are left
unmodified, and negative similarities are modified to lie closer to zero.

Significance weighting A method that devalues similarities that are based on too few co-rated items.
It is based on the observation made by Herlocker that users that have few items in common but are
highly correlated, usually turns out to be terrible predictors for each other. His experiments show
that a minimum of 50 co-rated items is typically required for producing more accurate predictions,
imposing a higher value on the minimum number of co-rated items doesn’t have any significant
effect on the accuracy. If two users have 50 or more items in common, their similarity is left
unmodified, but if they have less than 50 co-rated items, the similarity is multiplied with the
number of co-rated items divide by 50.

In particular significance weighting is also a useful extension for cosine based similarity measures. In
[Sarwar et al., 2001] the adjusted cosine similarity measure and significance weighting is used to deter-
mine item similarities based on user ratings, they report better results when using the adjusted cosine
than when using the person correlation coefficient as a similarity measure.

Pearson’s correlation coefficient

[Resnick et al., 1994] suggested (by use of an example) the usage of the Pearson correlation coefficient
as a similarity measure between users item ratings.

By studying how users ratings are distributed in a scatter plot it is determined whether a positive
or negative linear correlation exists between the two users ratings [Figure 1.4]. As with any correlation
based similarity measure only co-rated items can be considered (unless an extension such as default
voting is also used).

The correlation between two users u and n is calculated using the two user’s respective row in the user
item rating matrix (as previously described), but ignoring columns for items both users haven’t rated.
Since it is practical to not have to deal with missing values in the matrix, we will adopt a variation of
the user item rating matrix model (in the next chapter a formal definition of this model will be given)
which associates a set of ratings with each user. Let; ru,i denote the rating on item i by user u; ur

denote the set of ratings given by user u. The similarity between users u and n can then be defined by
their Pearson correlation as follows:

similarity(u, n) =
∑

i∈I (ru,i − ur)×
∑

i∈I (rn,i − nr)√∑
i∈I (ru,i − ur)

2 ×
∑

i∈I (rn,i − nr)
2

(1.2)

where I is the set of co-rated items, i.e. I = {i|ru,i ∈ ur ∧ rn,i ∈ ir}.
Note that the mean ratings ur and nr for each user should be calculated over the set of co-rated items

since the correlation formula only deals with co-rated items. Variations of the formula exist, particularly
one form that does not require the calculation of user means is often used. The similarities defined
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(a) Correlation: -1 (b) Correlation: +1 (c) Correlation: 0

Figure 1.4: Scatter plots showing two users u (x-axis) and n (y-axis) correlation when assigning ratings
on a discrete rating scale 1 − 5 to items. A −1 correlation can be interpreted as whenever user u rates
something high user n rates it low, or whenever u rates something low n rates it high. A +1 correlation
can be interpreted as whenever user u rates something high user n rates it high, or whenever u rates
something low n rates it low. A 0 correlation simply means that whenever u rates something low, n
might rate it low too or just as likely rate it high, no linear relationship exists in the scatter plot.

in this manner will lie in the interval [−1, 1] where similarities near −1 mean negative correlation and
similarities near +1 mean positive correlation. Values around zero indicate that no linear correlation
existed between the two users, this doesn’t necessarily mean the two users have dissimilar taste, however
in lack of further analysis we must assume the users are dissimilar.

While the application of the Pearson correlation coefficient has been in terms of determining similarity
between two users, a similar reasoning applies to finding the similary between two items. The correlation
between two items is calculated using the two items’s respective column in the user item rating matrix,
but ignoring rows for users that haven’t rated both items. To denote the set of ratings given to an item
i the notation ir is used. The similarity between items i and j can the be defined by their Pearson
correlation as follows:

similarity(i, j) =
∑

u∈U

(
ru,i − ir

)
×
∑

u∈U

(
ru,j − jr

)√∑
u∈U

(
ru,i − ir

)2 ×∑u∈U

(
ru,j − jr

)2 (1.3)

where U is the set of co-rated items, i.e. U = {u|ru,i ∈ ir ∧ ru,j ∈ jr}.
As can be seen the notation is the same with users substitued for items.

Cosine angle

In the user rating matrix terminology we can can view each user’s row in the matrix as a rating vector,
and use the cosine angle as a similarity measure between two users rating vectors. The cosine angle is
measured in an N -dimensional space where N is the number of co-rated items between the two users.

Using the previously adopted terminology the similarity between users u and n can be defined by the
cosine angle between their ratings vectors as follows:

similarity(u, n) =
~u · ~n

||~u|| × ||~n||
=

∑
i∈I rui × rn,i√∑

i∈I r2
u,i ×

∑
i∈I r2

n,i

(1.4)

The similarities defined in this manner will lie in the interval [0, 1], where zero means no similarity and
one strong similarity.

Adjusted Cosine

When finding the similarity between two items based on users ratings on the items, [Sarwar et al., 2001]
found that using an adjusted version of the cosine angle when calculating similarities produced better
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results (the resulting predictions relying on the calculated similarities were better in terms of some
evaluation metric) than using the cosine angle and the person correlation coefficient in the similarity
calculation.

The similarity calculation based on adjusted cosine unlike basic cosine takes into consideration that
users use different personal rating scales. The similarity between items i and n is now defined as:

similarity(i, j) =
∑

u∈U (rui
− ur)× (rn,i − nr)√∑

U∈U (ru,i − ur)
2 ×

∑
i∈I (rn,i − nr)

2
(1.5)

Mean squared difference

Used most notably in the Ringo system. Let |I| denote the number of co-rated items for user u and n.
The similarity between users u and n is defined as:

similarity(u, n) =
1
|I|
∑

(ru,i − rn,i)
2 (1.6)

1.3.3 Recommendations

Equally prevalent in CF research as similarity measures, is research into how to use the similarities to
make actual recommendations. Two distinct types of recommendations are considered to exist, predic-
tions and ranking lists (top N lists). A prediction is a value indicating to a user some kind of preference
for an item, while a ranking list consists items the user will like the most sorted in descending order of
preference, typically only the top N items in the ranking list are shown.

Prediction algorithms

A prediction is a numerical value pu,i that express the preference (interest, ”how much something will
be liked”) of item i for a user u. The preference is usually encoded as a numeric value within some
discrete or continuous scale, i.e. [1, 5] where 1 expresses dislike and 5 a strong liking. Several different
prediction algorithms have been proposed in the literature. The most commonly used is [Equation 1.9],
commonly known as weighted deviation from mean, which was first proposed in the GroupLens System
[Resnick et al., 1994].

Prediction algorithms rely on a set of neighbors N that consists of users that for simplicity in this
discussion will be assumed to have rated the active item i. Three common ways of computing predictions
are then:

pu,i =
1
|N |

∑
n∈N

rn,i (1.7)

pu,i = k ×
∑
n∈N

wu,n × rn,i (1.8)

pu,i = ur + k ×
∑
n∈N

wu,n × rn,i (1.9)

The constant k, sometimes called the ”normalizing constant” is usually taken to be:

k =
1∑

n∈N |wu,n|
(1.10)

The normalizing constant doesn’t cause the predictions to lie within the original rating scale the predictors
rated items on, however it will make them lie ”close enough”. Predictions can be put into the original
rating scale by clamping values (e.g. clamp all prediction above 5 to 5). In a sense the predictions
are relative each other, a high predicted value indicates a stronger preference than a lower predicted
value, however since predictions are often viewed ”on their own” it does become necessary to clamp the
predictions to a scale the user can understand.

Note the usage of wu,n where w stands for weight. The first prediction algorithm uses no such weight,
it simply calculates the whole population’s average rating for the active item i. The weight is introduced
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in the second prediction algorithm to discern between levels of user similarity, this weight is the similarity
between the active user and each neighbor contributing to the prediction, which in this case means all
users in the population that have rated the item. (Weights are always taken as some form of similarity
between users, the term weight stems from the recommender systems histoy in information retrieval and
filtering and will not be used beyond this chapter, instead the more obvious term similarity will be used.)

The first prediction algorithm [Equation 1.7] expresses the simplest case, the predicted value is just
the average value for that item given by all users (because of this the name Item mean is sometimes
used to refer to this prediction algorithm). This algorithm is often used as a baseline predictor when
new prediction algorithms are tested.

The most common aggregation formula used is [Equation 1.8] (which can be refered to as the Weighted
average rating prediction algorithm), it weighs all user with respect to its similarity to the active user. The
purpose of the weighting is to ensure that like-minded users for the active user will have more to say in the
final prediction, this algorithm was used in for example the Ringo system [Shardanand and Maes, 1995].

However, it has been found that users use different rating scales when rating items, e.g. some users
will be very restrictive about giving items top ratings, while other users may be more generous or have
widly different definitions of what a top rating means and and rate many items they like with top
ratings (perhaps two users have the opinions ”great movie, I give it a two” and ”terrible movie, I give
it a two” about the same movie, which isn’t unusual as the authors can testify). This means that
the rating distribution between users will be skewed. Letting a user that rates many movies with the
top rating predict for a user that is very restrictive about top grades may have a negative effect on
prediction quality. In order to neutralize the negative effect of the skewed rating scales, [Equation 1.9]
was introduced. The very basic idea is to start out with the active users mean rating, and then look at
how the active user’s neighbors deviate from their mean rating (because of this the prediction algorithm
is often referd to as Weighted deviation from mean). If the neighbors do not deviate from their mean
rating, then neither should the active user. This prediction algorithm was used first in the GroupLens
System [Resnick et al., 1994].

Common prediction algorithms used by item based CF have similarities with the previously presented
prediction algorithms, however with some important differences. The neighborhood set N consists of
items similar to the active item i. For discussion it will be assumed that N consists of all items similar
to the active item.

A algorithm in the item based case that is similar to [Equation 1.7] would simply take the active
users average rating on all items he has rated. However as that makes little sense, the items’ degree of
similarity is also accounted for.

A common algorithm for making predictions in item based CF is [Equation 1.11] (often referd to as
Weighted sum) (with e.g. k = 1

|N | ).

pu,i = k
∑
j∈N

wi,j × ru,j (1.11)

Ranking algorithms

A ranking list, or more commonly a top N list since the ranking list typically consists of the N items
(out of all available in the dataset) that the active user will like the most sorted in descending order
of preference. Top N lists can be created both by simply sorting predictions, or by using algorithms
specifically designed for top N list generation. Any recommendation technique making predictions can
also sort the predictions to generate top N lists. Thus the following methods for generating top N lists
are usually created when the underlying data is not ratings, rather transaction data, e.g. information on
what items a user has purchased. However, there is nothing to prevent using rating, however it will be
necessary for some parts of the algorithm to reduce the rating data to unary data, this means loosing
information which might lead to worse results had predictions been sorted.

Two ways of producing top N ranking lists, when the underlying data is transaction data, are given
in [Karypis, 2001] and are outlined below.

Frequent item recommendations This method creates a top N ranking list by first creating a set of
items consisting of all items neighbors of the active user has purchased. Items that the active user
has purchased are excluded from the set. The frequency of each item in the set is counted, i.e. it is
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counted how many of the neighbors purchased each item. The items are then sorted in descending
order of frequency. The N most frequent items are then presented to the active user as a top N
list.

Similar item recommendations This method creates a top N list by first creating a candidate set of
the k most similar items for each of the items in the active users profile. The set consists only of
distinct items and items already purchased by the active user are removed. For each item in the
candidate set, its similarity to each of the items in the active users profile is computed and summed
up. The N items in the candidate set are then sorted with respect to their summed similarity to
the active users profile. The N items with the highest summed similarity are then presented to the
active user as a top N list.

In [Deshpande and Karypis, 2004] an interesting variation on their similar item recommendations
method is proposed. Instead of only finding the k most similar items for each item in the active
users profile, the k most similar items to all possible sets of items in the active user’s profile are
found. For example, suppose the active user has three items i1, i2 and i3 in this profile, then
the candidate set should include the k most similar items for not only items i1, i2 and i3, but
also for the sets {i1, i2}, {i1, i3}, {i2, i3} and {i1, i2, i3}. This requires a similarity measure that is
able to determine similarity between one item and a set of items. They claim that this approach
will discover items that can be of potential interest to the active user that otherwise wouldn’t be
found, i.e. the k most similar items to e.g. the set {i1, i2} might include items that are not in
either of the individual items list of k most similar items. Techniques implementing this method of
generating top N list require very large models of the k most similar items to be build, to reduce
model size only item sets that occur frequently among users can be used. The notation frequent
item sets is used by the data mining community in connection with association rules as defined in
[Agrawal et al., 1993].

1.4 Content Based Filtering

Information filtering and content based filtering refers to the same paradigm, filtering items by their
content. However information filtering is most often used in connection with text documents, while
content based filtering allows for a wider definition of content. Pure content based filtering, as defined in
[Balabanovic and Shoham, 1997], is when recommendations are made for a user based only on a profile
built up by analyzing the content of items that the user has rated or otherwise shown interest in. We will
be using the term content based filtering since we will not constrain our self to text documents only, that
is, we will use any content that after some preprocessing can be used in the filtering process. From the
definition we can identify two important steps in content based filtering, the need for both a technique
to represent the items and for a technique to create the user profiles.

Many of the techniques that have been developed and used in text retrieval and text filtering have
been adopted by the content based approach [Oard, 1997]. One of the more popular techniques is the
vector space model and especially the tf-idf weighting scheme for representing the content of the text
documents. Popular approaches for creating user profiles are techniques found in the machine learning
field. One such technique is the use of a classification algorithm that can learn a user profile that it can
use to distinguish between items that are liked and disliked by the user.

So not surprisingly, recommender systems that use the content based approach are often found in
domains where the content has some similarity to plain text documents. For example Syskill & Webert
[Pazzani et al., 1996] is a content based recommender system for webpages. Users rate webpages on a
three point scale, the system can then recommend new WebPages or create a search query for the user
to be used in a search engine. Users of the system are presented with an index page that links to several
manually created topic webpages that contains hundreds of links to pages within that topic. The system
creates user profiles for each topic rather than user profiles for all topics combined. Based on the user
profiles, some of the links on the topic pages will be associated with a symbol (e.g. thumbs up, thumbs
down, smileys, etc.) that symbolizes how much the user will like the page that is linked to.

In the Syskill & Webert recommender system each webpage is represented as a boolean feature vector
consisting of the k most informative words for the topic it belongs to. The boolean values for each feature
indicates if a word is present or absent in the web page. They chose k to be 128. Words to use as features
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in the feature vectors differ for each topic, but are the same for all webpage’s belonging to the same topic.
The words within each topic are chosen based on how much expected information gain the presence or
absence of the word will give when trying to classify a webpage for a user. A learning algorithm is used
to classify unrated webpage’s for users, the learning algorithm analyzes the content of all the pages a user
has rated and by this process learns the user’s profile. Five different types of learning algorithms were
tested by Pazzani et. al, Bayesian classifiers, nearest neighbor algorithms, decision trees, neural nets
and tf-idf as described in the vector space model. The algorithms show different results over different
topics, but the overall best performance is given by the Bayesian classifier. All algorithms show results
that almost always beats the baseline algorithm, which is just guessing what pages a user would like.

Content based filtering systems based on item attributes differs in some aspects from keyword based
systems like Syskill & Webert. Extracting product content is a straight forward process, the attributes
of the product is usually well structured, such as for movies where the content consists of attributes like
the movie’s director, lead actress/actresses, genre etc. However, the challenge is to select only the most
important attributes. The key issue here is: what defines an attribute as important? Since importance
differs from product to product, no standardized ways, like for example the tf-idf weighting scheme
used with text documents in the vector space model, exists for product attributes (that we are aware
of). Choosing the wrong attributes can have a great impact on the performance of the recommendation
technique, so the choice of attributes is usually done manually either by some domain experts or by
empirical tests.

In [Melville et al., 2002] they represent the content of a movie as a set of ”slots” containing attributes
of the following type: movie title, director, cast, genre, plot summary, plot keywords, user comments,
external reviews, newsgroup reviews and awards. A movie will in this case be represented as a vector
of bags of words. A naive Bayesian classifier is then used to create user profiles. They report almost
equal performance between their implementation of a user based collaborative filtering technique and
the content based filtering technique.

A way of making movie recommendations with a minimum of knowledge about the users is described in
[Fleischman and Hovy, 2003]. Instead of representing and learning user profiles from the users preferences
about movies, the recommender system only uses one movie as a seed movie to base its recommendations
on. For example, suppose the active user has a favorite movie and wants to find out if there exists any
similar movies. By using the favorite movie as a seed movie, the recommender system can make some
recommendations that are based on the similarity with the seed movie. They propose two different
techniques for this and the only difference between them is how the content of the movies is represented.
In the first technique, they only use the plot summaries of the movies and represent the movies with a
binary vector, where 1 and 0 represents the presence and absence of a word respectively. The size of the
vector is the same as the total size of the used vocabulary. Two movies are found similar by calculating
their cosine similarity as described in the vector space model. The second technique also uses the cosine
similarity for finding similar movies, but the representation of the movies is different. In this case, each
movie is represented by a vector that contains the movies cosine similarities to different movie genres.
Each genre is represented as a vector of keywords that are weighted by how indicative they are of the
particular genre. The keywords were taken from the Internet Movie database (IMDb)3. Thus, the first
technique recommendations movies based on how well two movie’s plot summaries match, and the second
one recommends movies from their shared similarity and dissimilarity to particular movie genres. Their
results shows that no conclusions can be made whatsoever about the performance of their techniques,
for example, they compared the top five recommendations from their techniques against the output from
IMDb on one particular movie and none of them recommended the same movies.

Vector Space Model

The vector space model is described in [Salton and Mcgill, 1983] as a vector matching operation for
retrieving documents from a large text collection. The user formulates a search query consisting of
words that best describes his information need and this query is then matched against all documents
in the text collection. The matching operation uses a similarity formula to determine which documents
best matches the search query and then retrieves those documents for the user.

In this model, a document (and a search query) is represented by a vector of weighted keywords
(terms) extracted from the documents [Salton and Buckley, 1988]. The model is also popularly called

3http://www.imdb.com/
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t1 t2 . . . tj
d1 w11 w12 . . . w1j

d2 w21 w22 . . . w2j

...
...

... · · ·
...

di wi1 wi2 . . . wij

Figure 1.5: Term document matrix. The rows represent documents and the columns terms that appear
in the document collection, but not necessarily in all documents. The cells contains weights indicating
the importance of each term in each document.

the bag of words representation since the words are stored in a unordered structure that does not
retain any term relation. For example, terms appearing together in a document can have some special
meaning, but that will be lost by this kind of representation. The weights represent the importance of
the keywords in the document as well as in the entire collection of documents. Since each document
vector is represented in a vector space that is spanned by the number of terms, this model can be viewed
as a term document matrix [Figure 1.5], where rows are documents and the columns are all (or some of)
the terms that appear in the document collection.

If we use wi,j to denote the weight for term j in document i, the document vector can be expressed
as:

di =< wi1, wi2, . . . , wij > (1.12)

This model has been used for a long time as a basis for successful algorithms for ranking, filtering
and clustering documents, see for example [Baeza-Yates and Ribeiro-Neto, 1999].

Three factors that must be considered when calculating the weights are term frequency, inverse
document frequency and normalization. After all the weights have been calculated, similarity between
two documents d1 and d2 can be calculated using for example the cosine angle:

similarity(d1, d2) =

∑
j wd1,j × wd2,j√∑

j w2
d1,j ×

∑
j w2

d2,j

(1.13)

The term frequency is just a count of how many times a term occurs in a document. If a term occurs
many times in a document, then it is considered important for that particular document. The term
frequency f for term j in document i, i.e. the number of occurrences of term j in document i, is denoted
as fi,j . This is sometimes referred to as the terms local frequency.

The inverse document frequency (IDF) identifies terms that occurs only in a few documents. Such
terms are considered to be of more importance than terms that are prevalent in the whole document
collection. Terms occurring in the whole document collection make it hard to distinguish between
documents and if used causes all documents to be retrieved which naturally affects the search precision.
The IDF factor is usually referred to as the terms global frequency. The IDF factor for a term is inversely
proportional to the number of documents that the term occurs in, since when the document frequency
for a term increases, its importance decreases. The frequency f for term j in document d is denoted
as dfj and the inverse document frequency for term k in document d is denoted as idfj . The inverse
document frequency ifj is inversely proportional to the document frequency dfj , i.e.:

ifj :
1

dfj
(1.14)

and varies with the document frequency dfj . The idfj for a term j is usually taken as the logarithm of
the ratio between the total number of documents D and the document frequency, i.e.:

D

dfj
(1.15)

The logarithm (which can be taken to any convenient base) is just there for smoothing out large weight
values. Thus we get:
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idfj = log
(

D

dfj

)
(1.16)

The term frequency fi,j and the inverse document frequency idfj can be combined as fi,j×idfi,j to obtain
a weight that accounts both for terms occurrences within a document and within the whole document
collection. However, it is necessary to perform some normalization in order to avoid problems related to
keyword spamming and bias towards longer document. Two types of normalization that is suggested is
normalized term frequencies and normalized document lengths.

Since higher term frequencies fi,j results in a larger weight value than for terms with a lesser frequency
models are vulnerable to keyword spamming, i.e. a technique where terms are intentionally repeated in
a document for the purpose of generating larger weight values and by that way improving the chances of
the document being retrieved. One way to avoid this is to calculate the normalized term frequency. The
normalized term frequency of term j in document i is denoted tfi,j and is usually calculated by dividing
the frequency of the term j with the maximum term frequency in document i denoted max(fi), i.e.:

tfi,j =
fi,j

max(fj)
(1.17)

Normalized document lengths are used since longer documents usually use the same term more often,
resulting in larger term frequency factors, and using more different terms as opposite to shorter docu-
ments. This means that longer documents will have some advantages over shorter ones when it comes to
calculating the similarity between documents. To compensate for this cosine normalization can be used
as a way of imposing penalty on longer documents, it is computed by dividing every document vector
by its Euclidian length. The Euclidian length of a document i is defined as:

dli =
√

w2
1 + w2

2 + · · ·+ w2
j (1.18)

Terms that should receive the highest weight are those that have high term frequency and low over-
all document collection frequencies. Salton [Salton and Buckley, 1988] refers to this property as term
discrimination since this suggest that the best terms are those that can be used to distinguish certain
documents from the remainder of the collection. This is achieved by multiplying the normalized term
frequency with its inverse document frequency tfi,j × idfi,j , and then normalizing it to achieve the final
weight for the term j in document i:

wi,j =
tfi,j × idfi,j

dli
(1.19)

1.5 Hybrid Filters

Both collaborative filtering and content based filtering have their strengths and weaknesses, hybrid
filters are an attempt to combine the strengths of both techniques in order to minimize their respective
weaknesses. There are many examples of recommender systems based on hybrid filters.

FAB A content based collaborative filtering system for webpage’s [Balabanovic and Shoham, 1997]. In
FAB webpage’s are represented by the words that receives the highest tf-idf weight and the user
profiles are represented by an tf-idf vector that is the average of the webpage’s that are highly rated
by the user. The user can then receive recommendations from similar users using the collaborative
approach or by direct comparison between a webpage and a user’s profile. Their results show that
the FAB system makes better recommendations compared to recommendations that are randomly
selected, human selected ”cool sites of the day” or pages best matching an average of all user
profiles in the system.

Syskill & Webert Pazzini [Pazzani, 1999] extended the content based technique that was used in his
Syskill & Webert [Pazzani et al., 1996] recommender system with collaborative filtering techniques.
He refers to this new technique as collaboration via content. Webpage’s are represented by the 128
most informative keywords for the class they belong to. A content based approach different from
the one presented in [Pazzani et al., 1996] is used both on its own and in combination with a
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collaborative filtering technique. In the content based approach a user profile is learned by first
applying an algorithm that assigns weight values to each informative word in a webpage a user
has rated. Weights are initially set to 1, the weight values for each webpage are then summed
up and if the sum is above a threshold value and the user liked the webpage, the weights are
doubled, otherwise they are divided by two. Training stops after 10 iterations over all pages or
when each rated webpage is correctly classified (i.e. weights for words on all positively rated pages
sum over the threshold, and weights for words on all negatively rated pages have a sum under the
threshold). Webpage’s are then recommended by applying the user’s weight values on the words
that occurs in each webpage and summing up the total weight for each webpage, the webpage’s
with the highest sum are recommended to the user. In the collaboration via content technique the
content based user profiles, consisting of the user’s word weights, are used instead of user profiles
consisting of ratings, in the same manner as in standard collaborative filtering. Their experimental
results show that when users have very few webpage’s in common, collaboration via content has
a better precision than standard collaborative filtering. But as soon as users get more and more
webpage’s in common, collaborative filtering performs almost equally well. Precision was measured
based on the top three webpage’s that was recommended to a user.

P-TANGO [Claypool et al., 1999] is a recommender system for news articles from an online newspaper
that uses both the content based approach and the collaborative approach in the recommendation
process. It’s not a hybrid system in the sense that the two approaches depend on each other,
instead they are implemented as two separate modules that are independent of each other. The
recommendations from the two approaches are instead weighted and combined to form a final
recommendation. One advantages over hybrid systems where both approaches are tightly coupled
and deeply dependent on each other, is that the system can choose which approach should have
more confidence during different circumstances. For example, when few people have accessed a
news article, the content based recommendation is weighted higher but as soon as more and more
people is showing interest in the article, the recommendations based on the collaborative approach
take over. Also, improvements of the system is easier, since whenever someone comes up with a
new and improved way of making either collaborative or content based recommendations, these
are easily incorporated into the system. The user profiles in the content based approach consists
of keywords that are matched against item profiles that consists of extracted words from news
articles. The keywords in the user profiles are either taken from articles the users have rated highly
or are keywords the users have marked as important. Their experimental results show that the
combined recommendations are a bit more accurate than either of the separate ones.

Rule based using Ripper In [Basu et al., 1998] they treated the task of recommending movies to
users as a classification problem. They saw the recommendation process as the problem of learning a
function f(< user,movie >)?{liked, disliked} that takes as input a user and a movie and produces
an output that tells whether the user will like or dislike the movie. For this task, they chose to use
an inductive learning system called Ripper. Ripper is able to learn rules from set-valued attributes,
in this case by taking as input a tuple < user,movie > consisting of two set-valued attributes user
and movie. They created tuples consisting of what they call collaborative features (user’s ratings
on movies) and content features (information available on movies, they used over 30 different
attributes). Using for example collaborative features the ¡user, movie¿ tuple would contain for the
user attribute which movies the user likes, and for the movie attribute which users that likes the
movie (e.g. < {movie1,movie2}, {user1, user2, user3} > where movie1 and movie2 are two movies
liked by the user in question, and user1, user2 and user3 are three other users that like the movie
in question). They also used what they call hybrid features, e.g. a movie was represented using
users that like a particular genre. Each such < user,movie > tuple is then labeled by whether or
not the movie was liked by the user. Given such tuples the Ripper can be trained to create rules
for every user, which can be used in the recommendation process. Example of an interpretation of
a rule for a user that like action movies can be ”if action is present among movies that the user
likes then predict user likes movie”. They report that their approach performs reasonably well
compared to the collaborative approach on the same data. However, this is only achieved with the
combination of a great deal of manual work in selecting and refining the attributes and at a low
level of recall.
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CF with content based filterbots Sarwar et. al uses in [Sarwar et al., 1998] what they refer to as
filterbots, software agents whose only purpose is to give content based ratings on new items that
arrives into the system. Since the filterbots are used as recommenders for those users that correlate
with them, new items will be available for recommendation much faster then if they had to wait
for real users to come along and rate them. They tested their filterbots in the GroupLens system
that recommends articles from a Usenet news server. One of the filterbots they implemented was
a SpellCheckerBot, whose sole purpose was to run a spell checking algorithm on every new article
that arrived to the Usenet news server. The final rating on the article was then decided based on
the number of misspelled words. Other filterbots that they tried based their ratings on the length
of the article and number of quotes in the articles. They report that a simple filterbot like the spell
checker can improve both the coverage (number of items available for recommendation among all
items) and the accuracy of the given recommendations. Their results however show that filterbots
are sensitive to which domain they operate over, e.g. some did well in newsgroups about humor
but some did not etc.

Content-boosted CF In [Melville et al., 2002] they implement two hybrid systems, the first one com-
bined the outcome from a pure content based filtering technique with the outcome from a user based
collaborative filtering technique by taking the average of the ratings that are generated. Their other
system is called content-boosted collaborative filtering (CBCF). This system first creates pseudo
user-ratings vectors for every user by letting a content based filter (as previously described) predict
ratings for every unrated item. These pseudo user-ratings vectors are then put together to give
a dense pseudo-user ratings matrix. Collaborative filtering is then performed by the use of this
matrix. Similarity between two users are calculated based on the pseudo ratings matrix, in the
prediction process two additional weights are added; the calculated accuracy of the pseudo user-
ratings vector for the active user and a self-weight that can give extra importance to the active
users pseudo self, since he is used as a neighbor. Their results shows that the CBCF performs best,
followed by pure CF, combined CF and CB and last pure CB. Although, the difference between
the CBCF and the pure CB is very small.

Combining attribute and rating similarity Two different recommendation techniques for movies
is presented in [Jin and Mobasher, 2003] that both use a combination of item similarity in their
implementation of a item based collaborative filtering technique. Similarity between two movies is
first calculated based on ratings given to them by users and then based on their content (they refer to
content similarity as semantic similarity). These two similarities are then combined into one single
similarity score. Rating similarity between two movies is calculated using adjusted cosine. Content
similarity is calculated as a linear combination of the similarity between the movies attribute.
The content of a movie includes the following attributes; title, year, director, genre, cast, MPAA
rating and plot summary. After preprocessing of the content data, the movie is represented as a
vector of attributes, where each attribute is represented in some suitable way, e.g. as a bag-of-
words in the case of plot summary. Content similarity between two movies, denoted ConSim(i,j)
where i and j are two movies, are calculated using their terminology as Consim(i, j) = a1 ×
GenreSim(i, j)+a2×CastSim(i, j)+a3×DirectorSim(i, j)+. . . where a1, a2, a3, ... are predefined
parameters that are used as weights. Each attribute similarity is calculated with some suitable
method. The final similarity score between two items i and j is then calculated as TotalSim(i, j) =
α×ConSim(u, j)+(1−α)×Ratesim(i, j) where RateSim(i, j) denotes the rating similarity between
two movies and α is a predefined parameter used as a weight. Note that with α = 0 this becomes
a pure item based collaborative filtering technique. The combined similarity score is used as a
weight in the weighted sum formula for producing predictions for the active user (as previously
described). This is also how their first technique works. Their second technique, differs in that
they first uses the combined similarity score to predict ratings for unrated items to decrease the
sparsity in the rating matrix. For each unrated item they find all its similar items that are above
some predefined similarity threshold and uses the weighted sum of these similar items ratings as
the estimated rating for the unrated item. Unlike [Melville et al., 2002] they don’t create a fully
dense matrix, they only choose to rate some of the unrated items. This new matrix is then used
as in their first technique. Their result shows that there is no significant difference in using a
combination of rating and content similarity from using only rating or semantic similarity. On the
other hand, this means that content similarity can be used in cases when there are to few ratings
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for calculation of rating similarity. (Note: they do claim that their techniques improve accuracy
of the predictions, but that claim comes from observations of the third and fourth (!) decimal in
their calculations of the mean absolute error. You just cant take such a claim seriously, the mean
absolute error is explained in detail in the next chapter as well as a discussion given on why such
differences in the thrid and foruth decmial does not matter to the end user.)

Unfortunately, a direct comparison of the results between theses techniques is nor feasible since they
all uses different datasets, different sizes of the datasets, different evaluation protocols etc. The need of
a standardization for evaluation of recommendation techniques is a major issue and will be discussed
further in the next chapter.

1.6 Recommender Systems

The environment for a information retrieval system is static in the sense that the available information
changes slowly but user needs change frequently. In contrast, information filtering systems are dynamic
as the information changes very often (typically there are ”streams of information” that need filtering),
but user needs are a bit more static [Belkin and Croft, 1992]. It seems therefore natural to build a system
that support both of these approaches for handling massive amounts of information, and one such type
of systems are recommender systems.

The environment for a recommender system is usually of a highly dynamic nature, both from the
information viewpoint and the user viewpoint. Users and items are added and removed often and user’s
preferences and needs change over time. Additionally the way users interact with the system itself is of
a dynamic nature, e.g. searching, browsing, commenting, rating, etc. The domain that a recommender
system operates over is usually very high dimensional and sparse, i.e. items can be of magnitudes
thousands to millions of which only a very few are known by each individual user.

One of the first articles that uses the term recommender system is written by Resnick and Varian
[Resnick and Varian, 1997], the term was there used to define a system that uses collaborative filtering
to make recommendations to users:

”In a typical recommender system people provide recommendations as inputs, which the
system then aggregates and directs to appropriate recipients”

The term recommender systems has since then become synonymous with any system that produces
recommendations, not only systems based on collaborative filtering. [Schafer et al., 2001] gives a tax-
onomy from a user perspective for different types of recommender systems used by e-commerce sites,
[Burke, 2002] identifies and classifies different hybrid recommender system.

However, as early as 1990 the term ”recommender” occurs in the paper ”An Algebra for Recommen-
dations: Using Reader Data as a Basis for Measuring Document Proximity” [Karlgren, 1990] by Karlgren
at Swedish Institute of Computer Science(SICS) where he used the term recommender when he tried to
define what he referred to as an ”recommender algebra” based on a collaborative approach and later, his
paper ”Newsgroup Clustering Based On User Behavior - A Recommendation Algebra” [Karlgren, 1994]
was used as a reference in [Resnick et al., 1994], which is one of the earliest recommender systems based
on the collaborative approach .

1.6.1 Recommender systems in e-commerce

In every domain of items, there are some items that directly appeal to a broad audience, or by some
marketing strategy make it to the top charts. This has the effect that niche items or items without
financial backup for marketing have trouble reaching out to the broader public. This creates a market
where popularity and strong economic interests dictate what the broad audience should like and buy. The
Web and in particular recommender systems have changed this, at least to some degree. Recommender
systems in e-commerce are not only a way of providing better customer services by giving personalized
suggestions and customized ways of searching and browsing the product database, but it also has the
effect of increasing sales on obscure items, items that for some reason didn’t find a broad audience when
they was released. Items without large financial backup and without an immediate broad appeal thus
no longer automatically remain unnoticed by the larger public, and as such get a chance to reach their
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public, even though it may still be niche items. A theory that describes this is called the long tail, where
the term tail refers to obscure items that for some reason can be found in context with more popular
items, called the heads. This theory was formulated and presented in an article with the same name
in the Wired magazine [Anderson, 2004]. The effect was observed when a fifteen year old book about
mountain climbing suddenly reach the top of New York Times bestseller list and stayed there for 14
weeks. What had happened was that Amazon.com’s book recommender system had noticed a buying
pattern among its customers and suggested that people who liked a newly published book about the
same subject would also like this book. People followed up on the recommendation, and the fifteen
year old book started to sell like never before. The combination of infinite shelf space with real-time
information about buying trends and public opinion resulted in a rising demand for an obscure book.
This is something that traditional retailers can’t offer and that’s why recommender systems have a
bright future in the e-commerce business, because this is one of the greatest strengths with recommender
systems, the ability to recommend interesting items that most users otherwise might not have found out
about.

Several of the early on developed recommender systems found their way into the commercial market.
GroupLens founded NetPerception Inc. in 1996, The people behind Ringo founded Agent Inc. in 1995,
later changed the name to Firefly and was bought by Microsoft in 1998. One of the biggest e-commerce
sites on the WWW, Amazon.com, started to use recommender systems as a part of their site in 1998
[Linden et al., 2003]. Nowadays, almost every e-commerce site use some kind of recommender system,
from simple ones that only recommend items according to statistics to complex ones like Amazon.com
that uses several different approaches and recommendation techniques.

1.6.2 Trust in recommender systems

The success of e-commerce recommender systems depend a lot of trust being achieved from both the
user side as well as from the seller’s side. A user must feel confident that the recommendations are
trustworthy and not just another trick from the seller’s side to increase sales without regards to the
customers interests, and the seller must trust that the information gathered from the users truly reflects
their opinion on the items. In the paper [Lam and Riedl, 2004] this issue is investigated in the movie
domain, where the observation had been made that the average rating for new movies was higher than
the average rating for the same movie after a significant amount of people had rated it. The author
hypothesized that this could be the effect of a so-called shilling attack, i.e. an item is initially given an
unfair amount of high ratings (by e.g. the seller) in the hopes that more people will notice it. However,
no clear evidence could be found that supported this hypothesis, one explanation they gave was that
new movies tend to be initially highly rated because the people who first know about it are users who
already like it and are a big fans of it. But one can argue that this is a possibility that must been taken
seriously and thought off in the design of a recommender system.

Similarly, rumors had been circulating that a certain recommender systems had been manipulated to
always include recommendations for items that otherwise collected dust on the shelves. If a recommender
system is caught performing such types of false and greedy recommendations, it will certainly loose all
its achieved trust among its users and when the trust is gone among the users, it’s gone for a long time.

The focus on understanding and trusting recommender system is something that has gained a lot
of research interest the last couple of years, the GroupLens team for example hosted a workshop in
conjunction with the 2005 year’s Intelligent User Interfaces Conference , where trust was one of the
main topics. Some researchers have tried to implement implicit trust into a recommender system on
the algorithmic level, hoping this would result in that the explicit trust for the recommendations would
increase as a direct result of more accurate recommendations, one such approach is described in the
paper Trust in Recommender Systems [O’Donovan and Smyth, 2005] where they uses the collaborative
approach for recommendations. To implement trust, the systems keeps track of scores of how well every
user is able to recommend items to other users, for every recommendation that match the active users
real opinion of an item, the score goes up for the user and for every time there is a mismatch, the score
goes down for the user. The idea is that this should reflect real life trust, i.e. if you know someone that
is good on recommending movies to you, then you have more trust in this person’s recommendations
compared to others. They show some significant improvements compared to the user based collaborative
filtering approach as described in GroupLens: an open architecture for collaborative filtering of netnews
[Resnick et al., 1994] but the main drawback is the calculation of the trust score. The only way of
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calculating it, is by letting users recommend items that other user already have an opinion about and
then checking who was successful and who was not, this must be done all the time and would probably
have an impact on the performance of the system.

In the paper Trust-aware collaborative filtering for recommender systems [Massa and Avesani, 2004]
they propose that recommender systems should be extended with what they refer to as trust-awareness:
it should be possible to base recommendations only on ratings given by users that the active user trust
or are trusted by another trusted user. Trust is collected by letting users rate other users, i.e. if you
in some way have interacted with another user, you can give this user a rating based on your personal
experience with him. For example, suppose a user have written a review of a movie and that you, based
on this review, decides to go watch it. If you experience with the movie was good, then you give the
user a good rating. This can then be used in the recommendation process as an extra weight. Trust
values can also be propagated through the whole community of users, i.e. if user A trust B and B trust
C, then it is possible to infer something about how much A could trust C. Their results shows that
by incorporating trust as weights in the recommendation process, the accuracy of the recommendations
are increased, this is especially noticeable for users with very few ratings for which recommendations
normally are of poor quality.

Other approaches to gain trust has been explored as well, in the paper Beyond Algorithms: An
HCI Perspective on Recommender Systems [Swearingen and Sinha, 2001] they let user try out and judge
different recommender systems in an attempt to find out which underlying factors beside the algorithm,
makes a user willing to accept and explore the given recommendations. One conclusion is that an effective
recommender system inspires trust in the system. The trust issue will be discussed further in Part III.

1.6.3 Recommendation approaches

Recommender systems takes different approaches in their effort to make recommendations for users.
A recommendation approach can be seen as defining what motivates the recommendations made by a
recommendation system. We distinguish between recommendation approaches and recommendation tech-
niques, a technique is simply a very specific outline or implementation of an approach. Techniques based
on the same approach will share many common features, especially in what motivates the recommen-
dations. From our research on recommender systems, we have concluded that the following approaches
represent the five most commonly used approaches.

Manual approach

This is the oldest approach, a critic reviews e.g. a movie and gives his judgement about how good or bad
the movie was. Based on this the user can then decide if the movie is worth watching. Works best if the
user knows the critic’s preferences and thus is able to decide how much he can trust the reviewer. This
is kind of a reversed personalization, the recommendations are non-personalized but the recommender
himself is personalized.

Statistical approach

This approach bases its recommendations on statistical measurements such as the average rating for a
item or market basket analysis (”users who bought this movie also bought these movies”), and popularity
based recommendations such as top selling lists, top rating lists, or top box-office lists for movies etc.
The recommendations are non-personalized since they are the same for every one. Due to its simplicity
and efficiency this is a very popular method [Schafer et al., 2001].

Content based filtering approach

The content based approach tries to recommend items similar to the ones a user is known to like by
analyzing the content of the items [Balabanovic and Shoham, 1997]. By letting the user explicitly express
his preference about items or by just assuming that items the user has bought or in some other way
showed some interest in is liked by the user, the recommender system tries to match the content of
those items with items that are new to the user. A user viewing a product page may receive a list of
products with similar content (e.g. movies in the same genre and/or by the same director). Personal
recommendations can be achieved if user profiles are maintained and updated by the recommender
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Hybridization method Description
Weighted By using two or more approaches, each approach’s recommendations

can be weighted against each other on how much they should affect
the final recommendation for an item.

Switching The recommender system switches between different approaches de-
pending on the situation.

Mixed Recommendations from different approaches are presented at the
same time to the user.

Feature combination User and item data is combined into a single profile.
Cascade One approach refines the recommendations given from another ap-

proach.
Feature augmentation The output from one approach is used as input feature to another.
Meta-level The model learned by one approach, is used as input to another ap-

proach.

Table 1.1: Hybridization methods.

system. Since recommendations are based on the attributes of an item, the user can get some insight
into why a particular item was recommended to him by looking at the recommended item’s attributes and
compare them to the items in his own profile. Thus, both trust in recommendations and transparency
of recommendations can be achieved with the content based approach. A broad perspective to content
is taken here which includes pure facts (e.g. actors in a movie) as well as text documents (e.g. a review
or description of a movie), keywords (”tags”) etc.

Collaborative filtering approach

With the collaborative approach, the recommender systems tries to recommend items to the active user
with the help of other users. Unlike in the statistical approach there is a collaboration between the active
user and the larger population, recommendations are thus always personalized for the active user. A
classical technique based on this approach is to build a user profile from the ratings the active user has
given to some items and match it against all other users to find out their similarity to the active user.
This similarity is then used to weight users so the ones with high similarity, i.e. users with a similar
taste as the active user, will have more influence in the recommendation process. The most similar users
are often referred to as neighbors and the classical technique is sometimes referred to as a neighborhood
based technique. Recommendations are given to a user on items the user hasn’t yet rated by other user
that have rated them. The system will either return predicted values for the unrated items or a ranked
list of items which it thinks the user will like. The classical technique is based on the heuristic that users
that agreed in the past will probably agree in the future [Resnick et al., 1994]. The user profiles are
maintained and updated by the recommender system which allows for personalized recommendations.
This approach can also be described as a way of automating the ”word of mouth” in a community
[Shardanand and Maes, 1995].

Hybrid approach

Since each approach has its own weaknesses and strengths, combinations of the various approaches
have been made in order to use the strengths in one approach to compensate for the weaknesses in
the other approach. Burke [Burke, 2002] identifies five different approaches, collaborative, content-
based, demographic, utility-based and knowledge-based. Since the demographic approach deals with
finding users with a similar demographic profile and to use their opinions about items to influence the
recommendations for the active user, we like to think about this as a collaborative approach, similarly for
the last two, utility-based and knowledge-based , we use a broader definition of content and how it can
be used and therefore classify these two approaches as content-based approaches. Burke also identifies
seven different methods that have been used to create hybrid-filters between the five different approaches
[Table 1.1], where combinations between the collaborative approach and some of the other approaches
using some of these methods are the most common ones.
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1.6.4 Problems and challenges of the recommendation approaches

The content-based and collaborative approach have their own weaknesses and strengths, a natural way
of solving this is to create hybrid filters. The manual and statistical approaches don’t suffer from the
problems that these approaches have because they provide non-personalized recommendations. We start
by identifying some of the issues with collaborative filtering that have been addressed in the literature
and then we go on with the content-based approach.

The collaborative filtering approach - weaknesses and strengths

First rater problem A new user can’t receive any recommendations before the system has learned
what preferences the user has. One common way of solving this is to ask the user to rate a fix
number of items before making any recommendations to the user. This approach is used in the
MovieLens system where every new user to the system must rate at least twenty movies before the
user can start to use the system and receive recommendations for movies.

New item problem A new item can’t be recommended until enough people have rated it in a collab-
orative filtering system. Sarwar et. al solves this in [Sarwar et al., 1998] by the use of filterbots
that are programmed software agents. These filterbots rate new items when they arrives to the
system by analyzing the content of the items and comparing it to their own rating profile, i.e. in
a movie domain some filterbots are specialized in a particular genre and will therefore rate movies
that belongs to that genre highly.

Sparsity Sparsity deals with the fact that most users only have observed few items or that most of the
items only have been observed by a few users. This has consequences when it comes to the coverage,
i.e. the recommender system’s ability to recommend all items and the accuracy of the given
recommendations. With sparse data users will most likely only overlap on a few common items,
resulting in recommendations based on questionable data. Several methods have been proposed
to deal with this problem. One approach is to add more data into the similarity calculation. This
can be done as in [Melville et al., 2002] where they extend the user profiles with content-based
ratings. A different approach is to reduce the dimensionality of the rating matrix by the use
of singular value decomposition as in [Sarwar et al., 2000b] or Principal Component Analysis as
in [Goldberg et al., 2001]. Although, some of these methods manage to produce slightly better
recommendations there are some trade-offs, valuable information can get lost by the reduction of
data and the adding of extra content to the user profiles means that more information must be
gathered, which is not always an easy task.

Scalability The main drawback with the collaborative approach is that the computations are very ex-
pensive because of the high dimensional spaces of users and items. The memory based techniques
requires that the whole user-item database is kept in memory, however when the database of users
and items grows this approach fails to scale up. Different solutions to this has been proposed, like
the ones in the paper by Breese [Breese et al., 1998] where model-based techniques are used as de-
scribed earlier. In [Conner and Herlocker., 1999] they experiment with different kinds of clustering
algorithms in an attempt to increase scalability and accuracy of predictions. The clustering algo-
rithm is used to make smaller partitions of the item space where each partition contains items that
have been found to be similar according to how users have rated them. After the partitions have
been found, collaborative filtering is applied to each of the partitions, independent of each other.
They report a mixed result for the accuracy of the predictions but they suggest that clustering
algorithms do increase the scalability of the collaborative approach. Another technique is proposed
in [Sarwar et al., 2001] where they apply singular value decomposition to reduce the dimensionality
of the user-item matrix. Although these techniques report improvements on the performance they
usually reduce the quality of the recommendations, i.e. ”What you gain in performance, you loose
in quality”. Models also need to be rebuilt to reflect the changes in the user profiles, this is done
off-line but it usually takes some time and during that phase, user profiles are not up to date. Some
simpler techniques like discarding popular and unpopular items reduces the dimensionality but at
the cost that some items will never be recommended. The trade-off between quality and perfor-
mance is something that must be considered and adjusted to the domain that the recommender
system operates over.
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Grey sheep problem Users with unusual or divergent taste can have trouble in finding users with
similar taste to serve as recommenders. It can also be the case that the kind of items these
users like have too few ratings to even be considered in the recommendation process. The use of
content-based predictions as in [Melville et al., 2002] is one proposed solution to this.

Some of the advantages with the collaborative approach is that it doesn’t require any representation
of the items, only the rating data, making it suitable for domains where item descriptions are hard to
make. Another issue is that it can offer a quality measure of items, i.e. items that are highly liked by a
majority can serves as an indication of the quality of the item.

Based on these observations, the collaborative approach is best suited for users that can be matched
with many other users and in an environment where the density of user ratings are relatively high and
the item domain is small and static.

The content based filtering approach - weaknesses and strengths

Content Representation - Content-based approaches are limited by the attributes that are associated with
the items. Obviously, if the item lacks descriptive attributes, it can’t be used in a content-based approach
and for items like graphical images and audio, it is very troublesome to find descriptive attributes.
Another issue is that the content must be added by someone, which can be a costly and tiresome
process, and in some cases not even practical [Shardanand and Maes, 1995]. However, the main problem
is to find those attributes that contains the most descriptive and significant information about the item,
which is often very domain dependent.

Limited Content Analysis If two different items are represented with the same attributes, this ap-
proach can’t distinguish between them. For example, in text-analysis a document is usually repre-
sented with its most important keywords, this approach can’t distinguish between a badly and a
well written article, if they use the same terms.

Serendipity problem Since the system only recommends items that matches the user profile, the user
will only receive recommendations that are similar to the items the user has already encountered.
This leaves little room for new experiences or serendipity and can lead to the user getting tired of
the recommendations since the recommendation system seems to only be able to recommend items
that the user would have discovered anyhow.

New user problem The system can’t recommend any items before it knows the user’s preferences. In
the content based approach, the active user’s preferences is the only factor that has influence on
the recommendations, fewer preferences means less accurate recommendations.

Advantages with the content-based approach is that a new item can be recommended without anyone
else having given their opinion on it, thus it doesn’t suffer from the new item problem as described in
the collaborative approach. Sparsity and scalability is not an issue, since no matching between users is
made, only between users and items.

One problem that both approaches shares is the new user problem, the fact that without enough
user preferences, the recommendations will suffer in accuracy. Although the content-based approach has
the advantage that it actually can recommend items based on less information about the user than in
the collaborative approach. In the content based approach, even if the active user has only rated one
item, recommendations of items similar to that particular item can be made, but in the collaborative
approach, if two users have one item in common, it gives no indication whatsoever about whether or not
they have the same taste and needs.

1.7 Case studies of recommender systems in the movie domain

One domain that is well suited for recommender systems is the movie domain. Many movies are just
waiting to find their audience but due to the enormous amount of movies, both old and new ones, it can
be troublesome for the average movie viewer to find the movies that appeals to his taste. And for the
so called movie ”cineasts”, discovering those new and old gems beyond ones imagination can be equally
challenging. Movie sites on the Web offers a solution to this in many various ways, for example, the
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Figure 1.6: The MovieLens welcome screen after you have become a member.

visitor can browse around the site for information on old and new movies, he can search for information
regarding movies using criteria’s such as who stars in a particular movie, who directed the movie, etc.,
and he can receive recommendations on movies based on his personal taste in movies. We will be looking
at four different websites that operate in the movie domain to see what kind of features they have
incorporated into their sites as a way of making it easier for a user to find the information that meets
his needs regarding movies. The main focus will be on their recommendation technique; how they work
and with a subjective opinion by the authors on how well they work. Other features that we have found
interesting will also be studied and reviewed. We will also compare the recommendation from each one
of recommendation systems on the basis of one movie that we like, namely the movie ”The Thing” by
John Carpenter

1.7.1 MovieLens

MovieLens is a movie recommendation website that is part of the GroupLens research project at the
University of Minnesota. They built MovieLens as a platform for researchers to experiment on in areas
related to recommender systems such as recommendation algorithms, recommendation interface design,
online community integration etc. By using MovieLens and (optionally) participating in various studies
the users contribute with important feedback that helps the researchers to developed and improve Movie-
Lens. However, for most people, MovieLens is just a fun experience where you can receive predictions
for movies you haven’t yet watched.

Recommendations

MovieLens gives predictions on movies as well as non-personalized recommendations. MovieLens also
provides a Top-N list of all movies that the system can make predictions for sorted in descending order
of prediction.

Predictions

Before you can get any predictions, you must become a member and rate 20 movies [Figure 1.6], that
the system randomly chooses, on a scale from 1 to 5.

The ratings for the 20 movies are used by MovieLens to predict ratings [Figure 1.7] on movies that
you haven’t yet rated. As a member you are encouraged to rate more movies in order to fine tune the
accuracy of the predictions that are given to you.

Non personalized recommendations Recently, MovieLens added a new recommendation service called
”QuickPick: Our Movie Gift Recommender” which is (more or less) a non personalized recommendation
service. You don’t need to be a member of MovieLens to use it, just enter the name of one movie that
you like and MovieLens will use that movie to find other movies that people have expressed similar
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Figure 1.7: The MovieLens interface. Recommendations are in red stars. You can rate movies you have
seen by using the menus.

Figure 1.8: Recommendations for the movie ”The Thing” given by MovieLens QuickPick recommenda-
tion service.

opinions about. It’s however also possible to enter the name of multiple movies you like and fine tune
the recommendations by making them more personalized. This recommendation service is based on the
same technique as that used for making predictions within the MovieLens system. [Figure 1.8] shows
the recommendations we got for the movie ”The Thing”.

How it works

With reference to a discussion with one of the developers of MovieLens, we will now give brief de-
scription of the recommendation technique MovieLens uses and some issues related to it. MovieLens
is based on the collaborative filtering approach, before 2003 the recommendation technique they used
was a neighborhood based CF technique, i.e. a user based CF technique. That technique used the
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Pearson correlation coefficient to determine similarity between users and the weighted deviation from
mean prediction formula. Different tweaks (extensions) to the technique was also used, such as only
using a relatively small number of the most similar users as recommenders for the active user. Some of
the researchers in the GroupLens team founded Net Perception Inc. and brought the source code for the
recommendation technique MovieLens was relying on with them, since this was a commercial company
the source code became closed sourced. Doing research on a closed sourced recommendation technique
makes it hard to maintain and perform new experiments, this was the main reason for a shift to a new
recommendation technique. The new recommendation technique that is currently in use by MovieLens
is an item based CF technique. Instead of computing similarity between users, the technique computes
similarity between pairs of movies (still only relying on user ratings on movies). The movie similarity
is then used as a weight in the prediction process. Thus when the active user wants a prediction for a
movie (the active movie), the technique will find the 20 movies that the active user has rated that are
most similar to the active movie. Note that it will almost always be possible to determine similarity
between the active movie and the movies the active user has rated since MovieLens precomputes and
stores all item similarities (as opposed to only storing the k highest similarities for each item), however
in some cases item similarity can simply not be determine due to missing data. The ratings for each one
of these 20 movies are then weighted against their similarity with the active movie and summed up. The
average of this weighted sum of ratings is rounded to the nearest half decimal and presented to the user
as a prediction on the active movie. Exceptions to the prediction process occurs when the active user’s
20 most similar movies to the active movie aren’t that similar, then the active movie’s average rating
(by the whole population) is instead used as a prediction. Additionally when the active movie has been
rated by too few users, no prediction at all will be given.

Does it work?

The way the recommendation technique is implemented makes it very conservative. Users with low
average ratings will rarely, if ever, get any 5 star predictions. Another reason it’s conservative is that in
the prediction process, it will almost always find 20 movies to compute predictions with and unless the
user has rated these movies very high (or low), the predicted rating tends to be near the user’s average
rating. Remember that it is the 20 most similar movies out of those that the active user has rated that
are used, this means that their similarity isn’t necessarily very high, that is a side effect of storing and
using all item similarities as opposed to only storing for each item its highest similarities. However, it
does ensure that predictions will almost always be possible. Another interesting issue is the difference in
accuracy between the predictions made by the new item based CF technique and the old user based CF
technique, says one of the developers of MovieLens. The item based CF technique (as implemented) tends
to generally be accurate but often, as mentioned, makes predictions near a user’s average rating. The
user based CF technique (as it was implemented) could be much more speculative, though occasionally
wrong. He believes that this can have something to do with the fact that it typically used a total of 50
other users, that had ”just one or two ratings [sic]” in common with the active user. Maybe this is the
tradeoff that has to be considered for every recommendation technique, should the recommendations be
safe and nearly boring or should there be more serendipitous in the recommendations with the risk of
giving recommendations that are very wrong in some cases?

Browsing

MovieLens is not a place for browsing around and looking for information about movies. First of all,
you need to become a member before you can even take part of the information that is available, and
secondly, MovieLens is designed to predict ratings for movies, not to serve as an information source
about movies. They do provide some brief information about movies such as title, genre, release year,
main cast and director. But for further information they provide a direct link to another movie website
(IMDb).

Searching

They support both simple and advance searches, i.e. search by genre, title, main cast, language etc.
The search results can be sorted by prediction, title, number of ratings to name a few. You can also
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use short-cuts, which are pre-defined searches and you can create your own shortcuts. Examples of
pre-defined shortcuts are ”Top picks for you” and ”Your ratings”.

Other features

MovieLens has started to implement features that encourage people to more actively participate in the
website, such as discussion forums, allowing users to edit movie information and letting users tag movies.
Tags are words or phrases that are added to the movies by the users. Movies with tags can be organized,
searched, classified etc. by their tags. Tags are however currently not used in the recommendation
process, it is simply an additional source of movie information. Another nice feature is called buddies,
you ask other MovieLens members to become your movie buddy and can then view both their predictions
for movies and a combine prediction score that reflects the average prediction for the movie among you
and your buddies.

1.7.2 Internet Movie Database

The Internet Movie Database (IMDb), started out as a Usenet newsgroup4 back in the early 1990’s and is
now a part of the Amazon group. It is considered to be the largest movie database on the Web, covering
nearly 500 000 movie and TV titles. With over 30 million visitors each month and with nearly 9 million
registered users, it can be considered to be one of the most popular sites on the Web.

Browsing

The front page of the website invites a user to start browsing around in a multitude of ways, there are
shortcuts with names like top 250 lists, news articles, movies now playing in the theatres, award winners,
movie quotes, movie of the day, etc. They even have a shortcut with the name ”Browse” that takes you
directly to the directory of all IMDb’s features. So, finding movies by browsing is easy, just a few clicks
and you will have found a couple of movies that might be of interest.

Searching

So, what about its searching capabilities, how easy is it to find a movie that your favorite director or
actor and actress has been involved with? Easy, the front page allows searching the whole database on
all attributes or based on a specific attributes like title, plot summary, keyword, etc.

Recommendations

IMDb has what they call a recommendation center, which to them is just one of many features they have
incorporated into their site, so no particular effort is made to promote it to the users. Other popular
features are for example their message boards, user comments, user votes for movies, goofs, trivia, plot
summaries etc. For a complete list and a detailed explanation of all the features offered by IMDb, see
IMDb’s A-Z Index5.

Nevertheless, the user can receive recommendations for movies either by going to the recommendation
center and type in the name of a movie or in connection with a movies information page, follow a link
named ”recommendations”, this will give the user recommendations based on the assumption that he
likes the movie in question. Since the recommendations are the same for every user, they are non-
personalized. [Figure 1.9] shows the recommendations we got for the movie ”The Thing” when using the
recommendation center.

How it works

How their recommendation technique works is a bit unclear, the only explanation they give is that ”It isn’t
feasible to handpick Recommendations for every film. That’s why we came up with a complex formula to
suggest titles that fit along with the selected film and, most importantly, let our trusted user base steer those
selections. The formula uses factors such as user votes, genre, title, keywords, and, most importantly,

4rec.arts.movies
5http://www.imdb.com/a2z/
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Figure 1.9: Recommendations for the movie ”The Thing” given by IMDb’s recommendation center.

user recommendations themselves to generate an automatic response.” Since the recommendations are
the same for every user, they are non-personalized. Probably some content-based technique that matches
the features of the movie against another movie is used, possibly combined with users ratings.

Does it work?

If someone would suggest these movies to me I would think he had a pretty good taste in movies, but
if someone asked me for recommendation on movies similar to the Thing, then most of these movies
wouldn’t make the list.

Other features

In the IMDb database most of the movies have one or more (plot) keywords associated with them,
these keywords are manually added descriptive keywords of a movie, for example the movie ”The Thing
(1982)” has keywords such as ”Paranoia”, ”Alien”, ”Flame Thrower” and ”Ice” associated with it. The
movie keyword analyzer (MoKA)6 is a relative new feature added by the folks at IMDb which allows
filtering movies by their keywords, say for example that you are in the mood for some gore, just enter
the keyword ”Gore” in the IMDb keyword search as the starting keyword for your exploration. A list
with keywords matching the serach will be shown with the word Gore displayed at the top and the
information that there’s 2082 titles somehow related to the keyword Gore! Partial matches of the word
gore like ”Gore-film” and ”Al-gore” as well as approximate matches like ”Hero-gone-bad” will be shown.
Each matching keyword on the list will take you to the complete list of titles that somehow is related
to the chosen keyword. We choose to follow the link for the keyword Gore which after all was what we
were interested in. And Voila! A list of all the 1019 titles that feature this exact keyword is presented
for us together with a related keywords map [Figure 1.10].

6http://www.imdb.com/moka/
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Figure 1.10: Part of IMDb’s MoKA keyword map for the keyword ”Gore” together with the 25 (out of
1019) highest rated movies featuring the keyword.

The related keywords map consists of all the different keywords that are associated with at least one
of the 1019 Gore movies. Together with the keyword is a number that indicates how many of the Gore
movies that are associated with the each keyword, by clicking on one of the keywords, we can narrow
down the list of movies. We choose to click on the keyword ”Blood” since we want some blood in our
Gore movie as well. This action reduces the list to 590 movies that all feature both the keyword Gore
and the keyword Blood. A smaller related keywords map showing all keywords that are featured in at
least one of the remaining 590 movies is shown [Figure 1.11]. Narrowing the search down further to
include also the keyword ”Exploding head” results in 48 movies [Figure 1.12]. As there is still too many
movies to choose from, we narrow it down by selecting the word ”Zombie” and end up with 16 movies
[Figure 1.13].

Finally we choose the word ”Disembodied Hand” [Figure 1.14], leaving us with three movies, of which
the one with the highest user rating is entitled ”Evil Dead II”, sounds like an interesting movie, lets
watch it! As [Figure 1.14] shows the remaining three movies have a lot of keywords associated with
them, however further narrowing seems pointless.

This way of letting the user select keywords and also see how the resulting list narrows down to just
a few movie titles is fun and inspiring, you wonder what kind of movies will be left that corresponds
to this list of keywords. The keyword map itself is nothing special, its just a rectangular map with the
keywords in alphabetic order with words that appear in many titles in more bolder style than keywords
that appears in fewer movies. But its more fun to pick keywords this way than from a vertical list or by
figuring them out by your own.

1.7.3 All Movie Guide

All Movie Guide (”Allmovie”)7 is a searchable database of movie related information that covers over
260.000 movies. Just like IMDb, the site has a number of different features for finding movies. You can

7http://www.allmovie.com/
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Figure 1.11: Part of IMDb’s MoKA keyword map for the two keywords ”Gore” and ”Blood” together
with the 25 (out of 590) highest rated movies featuring the keywords.

Figure 1.12: Part of IMDb’s MoKA keyword map for the three keywords ”Gore”, ”Blood” and ”Exploding
head” together with the 25 (out of 48) highest rated movies featuring the keywords.
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Figure 1.13: Part of IMDb’s MoKA keyword map for the four keywords ”Gore”, ”Blood”, ”Exploding
head” and ”Zombie” together with all 16 movies featuring the keywords.

Figure 1.14: Part of IMDb’s MoKA keyword map for the five keywords ”Gore”, ”Blood”, ”Exploding
head”, ”Zombie” and ”Disembodied Hand” together with all 3 movies featuring the keywords.

37



for example search for movies with two people in common or you can search for people with two movies
in common.

Browsing

On Allmovie’s front page you are presented with selections of movies and related information to start
out with under headings like trailers, new DVD releases, essays about movie related subjects, movies
now showing in theaters. There is also have a feature called Quick Browse that lets you browse movies
by genre, country and time period. A bit modest compared to IMDb’s front page, but it will get you
started.

Searching

A search option is available at the top of each page but, strangely, there is no advanced search option
anywhere. Two funny search options entitled film finder and people finder are however available. The
film finder lets you type in the name of two people and see if they have a movie in common. The people
finder lets you type in the name of two movie titles to see which people they have in common.

Another feature is glossary, which is a reference source for a wide variety of movie and film-related
terms written by experts in the field with various search capabilities. The glossary includes an explanation
for all kinds of movie related terms which can be of help in the search process.

Recommendations

The user can’t ask for recommendations, instead, the webpage for a particular movie contains not only
the movie’s attributes (which there is often an abundance of!) but in many cases also three different
lists of movie recommendations. They have choose to categorize their recommendations as; similar
movies, movies with the same personnel and other related movies. The title of the movie is presented
with its release year and director. Since the recommendations are the same for every user, they are
non-personalized. [Figure 1.15] shows the recommendations we got for the movie ”The Thing”.

How it works

As opposed to IMDb, these recommendations are manually selected by experts working for Allmovie, at
least according to the answer we got from them when we asked them how the recommendations were
made.

Does it work?

One can tell by looking at the recommended titles that there has been some effort behind these recom-
mendations, they aren’t just picked because they are in the same genre or something trivial, it’s more
because they share the same mood or have a similar plot, something not quite graspable but definitively
similar. Unfortunately, you can’t choose any movie you want as seed movie for the recommendations, as
in the IMDb case, since not all movies have a recommendation list on their information page.

1.7.4 Amazon

“If I have 3 million customers on the Web, I should have 3 million stores on the Web.”
– Jeff Bezos, CEO of Amazon.com

Amazon is an American e-commerce company that started out in 1995 as an online bookstore. Due to
its growing popularity it didn’t take long before Amazon also started selling other products such as CDs,
DVDs, computer software, gourmet food, musical instruments, toys, etc. As a customer visiting Amazon
you are faced with so many options and products to choose among, that without some guidance you will
probably real soon get lost. To overcome this problem, Amazon has come up with a variety of solutions
for enhancing the customer’s shopping experience. The solutions can be divided in the following three
categories:

Site features Recommendations of various kinds shown while browsing the webstore for products.
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Figure 1.15: Recommendations given for the movie ”The Thing” by All Movie Guide.

Your community Provides, among other things, personalized recommendations and different ways for
customer to interact with each other.

Notifications & E-mail subscribing An e-mail service that sends recommendations for new items or
other interesting news that the customer has choose to be informed about.

Our focus will be on what kind of site features Amazon.com has incorporated into their movie section,
i.e. the DVD section. Some community features will also be discussed, such as tagging, rating and
reviews.

Browsing

Amazon’s DVD section is filled with different browsing options. You can browse by genre, top sellers,
new & future releases, blockbusters, offers, etc. The trick is to lure the visitor into browsing and by that
process convert the visitor into a buyer. Amazon does this with the help of different site features where
recommendations play the major role.

Searching

Amazon offers both a simple search and an advanced search with the usual list of search options for
movies, such as title, actor, director, genre, etc. One interesting search option allows searching for
special features on the DVD, like alternating endings, deleted scenes, etc.
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Figure 1.16: All the features that are enable from ”Your Store”

Figure 1.17: Amazon provides a list of personalized recommendations to members in their Your Store
feature.

Amazon also has their own search engine called A98, that allows customers to search the internet.
Interesting about A9 is that it uses the customers account information to provide personalized search
results as well as the users search history.

Recommendations

To get the most out of the recommendations, Amazon suggests that every user become a member of
Amazon’s community by setting up an account. In order to buy something from Amazon, the user must
create an account, so every customer is by default also a member of the Amazon community. After a
user has become a member, Amazon activates a feature called Your Store [Figure 1.16]. This feature
gives the user access to a range of features only available for members. Among those features is the
ability for a member to improve his recommendations by giving explicit feedback about his preferences.

Every time the customer visits Amazon, he can log into his store and receive recommendations that
are based on his own taste [Figure 1.17].

Amazon also keeps track of all the items that a user has viewed and searched for, and the type of
product categories that have been visited, during the current visit. This kind of implicit information

8http://www.a9.com/
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Figure 1.18: Recommendations for the movie The Thing given by Amazon on their Page you made
feature, which bases recommendations primarily on products viewed during the current visit to Amazon.
The top four recommendations out of totally twenty are shown in the figure.

Figure 1.19: Recommendations for the movie The Thing shown at the product page for the movie.

is then used by a feature called The page You made and Your recent history [Figure 1.18] to create
recommendations based on the interests shown during the current visit.

Amazon also supports non-personalized recommendations. For example when a customer is viewing
the product page for an item, in this case for the movie The Thing, recommendations of the form ”Cus-
tomers who bought/viewed this item also bought/viewed these items” or ”Better together” (Amazon.com
suggest an item that they think the customer should buy together with the one currently being viewed)
are shown [Figure 1.19].

A customer at Amazon has his own shopping basket, when the customer adds something to the
shopping basket or just views its contents, a page with recommendations is shown [Figure 1.20]. These
recommendations are based on the current contents of the shopping basket and on the item (if any) just
added to the shopping basket. Recommendations are of the type ”Customers who bought/shopped/viewed
the items in the shopping basket also bought/shopped...” This feature provides a nice browsing experience,
where users can always easily find a interesting path to continue browsing on after finding a product
interesting enough to add to the shopping basket.
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Figure 1.20: Recommendations shown when a customer views the contents of the shopping basket, in
this case the shopping basket contains only the movie The Thing. The recommendations are based on
the items currently in the shopping basket.
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How it works

According to the paper written by Linden [Linden et al., 03], Amazon.com’s recommendations are based
on what Linden calls item-to-item collaborative filtering. It is clear that the recommendation engine
uses the purchase history of customers, since this is mentioned both in the paper and several times
at the Amazon.com website. However, they also mention that customers ratings on items and items
that the customer has specified he owns are used in the recommendation process with the possibility
to exclude specific items from the recommendation process. So they have probably implemented some
tweaked version of the recommendation technique described in the paper. Also what is interesting is that
Amazon supports short termed user profiles containing e.g. browsed products as opposite to long termed
user profiles consisting of e.g. the user’s purchase history. The short termed profiles of a customer can
be found in the feature The page you made, where the customers recent activity on the web-site can
be found together with recommendations based on those activities. The support of both short termed
user profiles and long termed user profiles is something that are considered to be highly important, and
is referred to respectively as ephemeral recommendations and persistent recommendations in [Schafer et
al., 01]. By giving ephemeral recommendations, the recommender system hopes to catch the customers
immediate need and change in taste for, in this case, movies.

Does it work?

In the authors opinion, it works well, but it is quite obvious that Amazon goes for safe recommendations,
probably because the customer is more willing to buy something he is familiar with than going for
something completely new and risky. Amazon makes sure to always motivate their recommendations
to some degree, usually by simple but clear formulations such as ”Customers who bought item X also
bought...” but in certain cases also by showing which exact purchased products resulted in a specific
recommendation. The system is easier to trust and, at a user level, to understand thanks to the usages
of these motivations. By supporting different kinds of recommendations, Amazon makes sure that they
can always give recommendations that to some degree are based on the customers preferences.

Other features

When the customer visits a product page, he is not only faced with recommendations and facts about
the product, he can also read what the Amazon user community thinks about the product. Some of the
features that appears on the product site for a DVD in Amazons DVD-section are:

Customer reviews and ratings Every customer that is a member of the Amazon.com community
can write reviews and rate items. This allows for other customer to see what previous customer
thought about the item.

Listmania! Shows lists created by customers. The feature in general allows customers to create lists
about just everything. The lists shown on a product page have some kind of connection to it and
serves as a kind of related products list.

So you’d like to... Allows customers to help each other find items and information that may be relevant
in connection with the product. For example, for the movie The Thing there is a guide named ”So
you’d like to... get scared” out of your wits, this guide contains information about other movies
that the writer of the guide thinks would interest a person that likes The Thing in the sense that
the person also likes to get scared.

Customer tagged this item with Tags are word or phrases that are given to items, in this case
movies. The main purpose of showing the tags for a movie is in the hope that they contain some
meaningful information that are of interest to the customer, and to provide another way of browsing
movies as it is also possible to click on the tags to see what other movies have been tagged with
the same tag.

Customers that tagged this item Shows names of people that have tagged the movie, by clicking
on their names the customer is taken to the person’s Amazon homepage. The Amazon homepage
contains more information about the person who tagged the movie, such as other movies they have
tagged, which might provide yet another way of browsing for movies.
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1.7.5 Recommendations for the movie The Thing

Since the recommendation systems that we have review is based in some cases on different techniques
and operates on different background data but in the same domain, we thought it would be interesting to
see if there is any big difference among the given recommendations. To test this in a slightly subjective
way we gave each recommendation system one movie to base their recommendations on, the movie we
used was The Thing directed by John Carpenter in 1982. [Table 1.2] present all recommendations that
are given for the movie The Thing by the different recommendation systems.

We can make the following observations based on [Table 1.2]:

1. MovieLens shows 12 recommended movies when using their QuickPick service.

2. Amazon shows 20 recommendations when asked for recommendations on the form of ”Customers
who bought this DVD also bought...”. Note that Amazon as mentioned provides many more different
types of recommendations (”Customers who bought/shopped/browsed/tagged” etc.), we picked the
most common and what we consider prominent type of recommendation for this comparision.

3. IMDb shows 13 movies in their ”Recommendation center” although the last recommendations are
not based on their recommendation algorithm, instead those are recommended using the motivation
”The monster inside you” (the 11th and 12th recommendation) and ”IMDb users recommend” (the
13th recommendation).

4. Allmovie groups three categories of recommendations, ”Similar movies”, ”Movies with the same
personnel” and ”Related in other ways”, together into one listing. In this comparision this was the
longest list of recommendations.

The plot synopsis for the movie The Thing on the IMDb reads as follows ”An American scientific
expedition to the frozen wastes of the Antarctic is interrupted by a group of seemingly mad Norwegians
pursuing and shooting a dog. The helicopter pursuing the dog crashes leaving no explanation for the
chase. During the night, the dog mutates and attacks other dogs in the cage and members of the team
that investigate. The team soon realizes that an alien life-form with the ability to take over other bodies
is on the loose and they don’t know who may already have been taken over.”

A closer look at Allmovies list of ”Similar movies” reveals that the common theme among these
movies seems to be the unknown desire for flesh - particular human flesh - either by consuming it,
remodeling it, or by just taking over the whole body. For example ”The Thing” has one scene where a
human head turns into a spider-like creature, and the movie ”Hiruko the Goblin” is about demons that
decapitate humans and uses their heads on spider-like creatures to fight humanity. The scene where the
dog mutates can be thought of as similar to the plot in the movie”Endangered Species” where the town
sheriff starts to investigate the rash of cattle mutilations - is it caused by extraterrestrials or is it the
government that is behind it?.

Amazon recommends eight movies directed by Carpenter and most of the other movies belongs to the
Horror and Alien genre. One movies that stands out from the rest is ”The Thing from another planet”,
another adoption of John W. Campbell’s short story ”Who Goes There?”, the short story that ”The
Thing” is also based on. Another recommendation that stands out from those given is ”Sin City”, which
can perhaps be seen as a slightly serendipitous recommendation.

The recommendations from IMDb seems to be either Alien or Gore movies with the exception of the
movies ”The Lord of the Rings” and ”Sin City”. Notable is that none of the recommended movies are
directed by Carpenter.

MovieLens offer the most divergence among the movies that are recommended, no obvious common
theme can be detected and the movies belongs to a broad category of genres like westerns, horror, Hong
Kong action, drama, gore and alien movies. Also here we notice that none of the recommended movies
are directed by Carpenter.

The recommendations given by Amazon and IMDb seem to be very genre dependent, i.e. since
”The Thing” by mainstream media is usually categorized as a Alien(Science fiction)/Gore/Horror-movie,
the recommended movies will also be from these genres. Amazon’s dependency seems to also include
directors, since it recommend a lot of movies from the same director. All the recommended movies are
also very known movies in their respective genre and some are known even for the broader movie public.
We would categorize the recommendations from Amazon and IMDb as very safe ones, a user who receives
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MovieLens Amazon.com IMDb Allmovie.com
QuickPick: Our Movie Gift

Recommender

Customers who bought this

DVD also bought

Recommendation Center Combined Similar movies
Movies with same person-
nel

Other related movies

For a Few Dollars More
(1965)

The Fog (1980) Dawn of the Dead
(2004)

Endangered Species
(1982)

Ringu (1998) They Live (1988) Day of the Dead (1985) Hiruko the Goblin
(1990)

Hard-Boiled (1992) Escape from New York
(1981)

Alien: Resurrection
(1997)

Night Beast (1983)

The Killer (1989) The Thing from An-
other World (1951)

Doom (2005) Body Snatchers (1993)

Alien (1979) Prince Of Darkness
(1987)

The Lord of the Rings:
The Return of the King
(2003)

Boa (2002)

Aliens (1986) An American Werewolf
in London (1981)

War of the Worlds
(2005)

Alien (1979)

City of God (2002) In the Mouth of Mad-
ness (1995)

Sin City (2005) The Fly (1986)

Evil Dead II (1987) Land of the Dead (2005) Dawn of the Dead
(1978)

The X-Files: Ice (1993)

Battle Royle (2000) Big Trouble in Little
China (1986)

Terminator 3: Rise of
the Machines (2003)

Shadowzone (1990)

The Evil Dead (1981) The Shining (1980) Freddy Vs. Jason Halloween (1978)

Once Upon a time in
the west (1968)

Assault on Precinct 13
(1976)

Alien (1979) Dark Star (1974)

The Outlaw Josey
Wales (1976)

Halloween (1978) An American Werewolf
in London (1981)

The Fog (1979)

Alien (1979) The X Files (1998) Prince of Darkness
(1987)

Sin City (2005) The Terminal Man
(1974)

Invasion of the Body
Snatchers (1956)

Escape from New York
(1981)

AVP - Alien Vs. Preda-
tor (2004)

They Live (1988)

Predator (1987) The Mean Season
(1985)

Poltergeist (1982) The Thing from An-
other World (1951)

The Exorcist (1973) Terror in the Aisles
(1984)

Escape From L.A.
(1996)

Alien3 (1992)

Elvis (1979)

Ghosts of Mars (2001)

John Carpenter: Fear
is Just the Begin-
ning... The Man and
His Movies(2002)

Table 1.2: Recommendations for the movie The Thing (1982) by John Carpenter given by four different
web-sites.
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this kind of recommendations would probably not be disappointed, which is of great importance for a
web-store like Amazon, since a disappointed customer could led to loss of money. However, showing the
customer only movies he already knows about, it is highly likely someone purchasing a movie by John
Carpenter is familiar with his other movies, might lead to the customer ignoring the recommendations
completely in the long run. It’s a difficult balance.

When it comes to a web-site like IMDb, it wouldn’t hurt with a bit more serendipity among the
recommendations, since the risk of making a bad recommendations is less expensive than for a web-site
that makes a living out of selling movies. The overall judgment is that for a person who is unfamiliar with
the genres that the movie ”The Thing” belongs to, IMDb provides some decent recommendations, but
for someone familiar with movies from these genres, chances are very high that he has already watched
all the recommended movies.

Allmovie had the most interesting recommendations, their viewpoint is that movies with similar
themes are good recommendations. The serendipity factor is high since the movies can be classified
as non-mainstream movies, compared to movies like ”Alien” and ”Dawn of the dead”, that are movies
that are well-known in their respective genre. If you want to be introduced to new genres and movies
you otherwise wouldn’t come across, then Allmovies is a good place. The major drawback with their
recommendation technique is the fact that it is made manually, which has the consequence that recom-
mendations are not given for all movies and can at times become too subjective.

MovieLens was the web-site that gave the most divergent recommendations, ranging from a wide
variety of genres and mostly with no obvious common theme between the movies. All the recommenda-
tions, with one exception ”City of God”, were movies the authors had previously seen and enjoyed. The
recommendations have certain elements of similarity. Looking at the recommendation Alien, we find a
recommendation given by all the other recommender systems too. A safe recommendation, that can be
seen to have both elements of science fiction and elements of atmosphere in common with the seed movie.
However, most of the recommendations are not so obvious recommendations. For example ”The Killer”
and ”Hard Boiled” is suggested, two Hong Kong movies where more bullets are fired each minute then
there are seconds in an hour[sic]. Based on the authors own movie taste those two movies would actually
be good serendipitous recommendations to someone who likes The Thing. Since MovieLens makes rec-
ommendations based on the collaborative ”people who liked this movie also liked these movies” approach,
indeed the basic motivation behind the recommendations is precisely such subject opinions, however not
among only the authors, but among a larger group of people. The authors considers it a good sign for
a recommender system to be able to make such leaps between apparently divergent genres and themes,
that still retain a level of relevance and interest to the receiver of the recommendations.

While browsing a web store such as Amazon might one might expect recommendations to constantly
retain a clear relevance and possibility for easy motivations, as such making serendipitous recommen-
dations like MovieLens might be difficult. However, nothing prevents a web store from including such
recommendations, in the hopes of steering a customer into new areas of interest.

The authors would like to emphasize that this has by no means been a comparison on how good or
effective respective recommendation technique is compared to each other, since such comparisons would
require that testing them all on the same dataset and using a large evaluation dataset. Indeed, only a
minor part of some of the systems was even touched upon. This is only a subjective comparison of the
respective systems recommendations given one single seed movie and based on the authors experience and
knowledge in movies.

1.7.6 Conclusions

Movie databases like IMDb and Allmovie are databases that are loaded with facts about and around
movies, thus much effort has been put into their searching and browsing features. When it comes to
recommendations, Allmovie goes for quality rather than quantity compared to IMDb. The authors have
found that the manual recommendations given by Allmovie is often of more value then those given by
IMDb. On the other hand is IMDb loaded with more movies and information and rich with features
for filtering this information, which is often more useful. Amazon, the only strictly commercial web-
site in this review, tries to please its customers rather than surprise them and risk negative feedback.
Nevertheless, by setting up an account and telling Amazon who you are and what your interests are, your
shopping experience will be enhanced. The authors have been particularly pleased with as an experiment
shopping for 80’s slashers at Amazon and relying only on the recommendations trail given when first
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adding the movie Text Cheerleader Massacre to the shopping basket. MovieLens, an ongoing research
project, does take risks and elaborates with their recommendations as well as their web-site since that is
the nature of their research. The authors have found that the non-personalized recommendation service
gives very good recommendations, but the authors experience of the systems ability to make personalized
predictions for movies hasn’t been as positive. Most of the predictions were near the authors average
rating (including movies the authors weren’t very fond of) and predictions that consists of extreme
ratings such as 1 star or five star were very rare, similar as to what was commented on by one of the
developers.

1.8 Patents

During the years, several patents for recommender systems have been granted by the U.S patent and
trademark office, some notable ones is Cendant Publishing’s patent ”System and method for provid-
ing recommendation of goods or services based on recorded purchasing history” in September 4, 1997
[Stack, 1997] and Amazon.com’s patent ”System and methods for collaborative recommendations” filed
in March 17, 1998 [Jacobi and Benson, 1998]. There has been, and still is, a lot of debate around these
and other similar patents. Companies are suing each other for using what they claim to be there inven-
tions, as an example Cendant sued Amazon for infringed on their ”370 patent” for providing people with
recommendations of goods or services to purchase based on a database of previous purchasing histories
of other customers. The suit was filed Oct. 29 2004 [Kawamoto, 2004].

1.9 Where are we today?

From originally having being a research question about ”How to do it?” the question has after the ACM
SIGIR’99 workshop in recommender system become a question of ”How can we do it better?” and ”How
do we know it’s better?”.

Herlocker, one of the co-founders of GroupLens, addressed thesse issues in his dissertation [Herlocker, 2000]
on recommender systems based on the collaborative approach. Herlocker tested over 1800 different col-
laborative filtering techniques and also goes through the different kinds of metrics that have been used to
evaluate recommender systems. Based on the results, he gives a framework for designing recommender
systems based on the collaborative filtering approach and what metrics are to be used to evaluate the
systems. He also tackles the problem of explaining the recommendations for a user by conducting an
on-line research where different recommendation interfaces are shown to a group of users.

In 2001, the SIGIR 2001 workshop for Recommender systems was held as a follow up to the SI-
GIR’99 workshop. This time the workshop was hosted by Herlocker and the theme was now ”algorithms,
applications, and interfaces”. As an attempt to get a clearer picture of the ongoing work in the field
of recommender systems, all individuals or groups that are involved in the research, development or
production of recommender systems are encourage to submit a one page summary of their work to the
workshop. These will then be aggregated and published in a paper entitled ”Who’s who in recommender
systems”.

The shift from a pure algorithmic to a more user oriented focus on recommender systems research
is something that seems to be gaining more and more interest in the research community today. In a
speech given at Yahoo in 2004 Herlocker points out two issues missing in today’s recommender system
research, a uniform standard for evaluating recommender systems and a focus on user interfaces. John
Riedl, another former member of the GroupLens team, wrote the year after in a foreword, published in
connection with that year’s ACM special issue on recommender systems [Riedl and Dourish, 2005], that
new algorithms only offers marginal improvements and that focus should now be on providing new ways
for users of recommender systems to search, browse and better understand recommendations. These new
capabilities will be realized trough new interfaces for recommender systems.
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Chapter 2

Implementation and evaluation of
common recommendation techniques

“Everybody got mixed feelings. About the function and form. Everybody got to deviate from
the norm.” – RUSH

Recommender systems help users find interesting items among a large set of items within a specific
domain by using knowledge about user’s preferences in the domain. We will be working in the movie
domain, applying common recommendation techniques to large sets of movie data. Although what we
describe is aimed at the movie domain, much of what we describe also applies to other domains.

The architecture of a recommender system can be divided into three distinct, but tightly coupled,
modules:

1. Recommendation profiles

2. Recommendation techniques

3. Recommendation interfaces

We will in this part focus on implementing recommender techniques with the intention of measuring
their accuracy in terms of accurate predictions and accurate Top-N ranking lists, thus focus will lie only
on the recommendation profiles and recommendation techniques. The recommendation techniques are
the algorithms that produces predictions or Top-N ranking lists.

By prediction we will mean a value signifying how much a user will like a specific item, the prediction is
usually, but not necessarily, on the same scale as the underlying rating data used to make the prediction.
And by Top-N ranking list is meant a list of the most relevant items for a user sorted in decreasing order
of relevance.

We will be using two common approaches for the recommender techniques that we will implement
and evaluate.

A recommendation approach solves the problem of what will motivate a recommendation. Two
common approaches are collaborative filtering and content based filtering. The CF approach relies on
the opinions of a large group of users, whereas the CBF approach relies on pure facts.

A number of common recommendation techniques, some of which have already been introduced in
Part I, build on the CBF and CF approach will be discussed, implemented and evaluated. In particular
evaluation will be made based on three datasets, one is a modified version of the well known MovieLens
rating dataset commonly used in scientific papers of this nature, the other two datasets, a rating and a
transaction dataset, are collected from a Swedish e-commerce site selling DVD movies.

Evaluation will be performed using common accuracy and relevance metrics, a thorough explanation
of the evaluation procedure and evaluation data will be given.

48



2.1 Recommendation profiles

Fundamental entities of any recommender system are user profiles and item profiles. The profiles are
a necessary part of the recommendation process. It is important to consider both the contents of the
profiles as well as the internal representation of the profiles. The profiles must contain enough information
for the system to be able to make accurate recommendations based on them. The shape and amount
of information differs from which approach is taken. We divide the process of creating profiles into two
steps; information analysis focuses on which information is needed and how to collect it; profile analysis
focuses on how to represent the profiles such that they can be used by the system in the recommendation
process. The goal of this module is to create profiles that capture the taste and needs of the users and
that are most descriptive of items.

2.2 Information analysis

There are two ways for the system to collect knowledge about a user’s item preferences. Users can either
explicitly enter their preferences into the system, by rating items or by filling out e.g. a form in which
preferences can be described. Or the system can study how the users interact with the system and
implicitly acquire knowledge about user preferences, for example the user’s purchase history can be used
as a implicit indication of preferred items, or site access logs can be used to determine which product
pages are viewed more often by the user [Schafer et al., 2001].

Some form of feedback from the user is also desirable as the system can then improve future recom-
mendations.

Information that represents users preferences can either be ratings for items or content based, e.g.
movie genres and directors. Items can be represented by ratings given by users or by its content, e.g.
attribute such as genre and director. Items can also be represented using keywords extracted from textual
descriptions of the items, if such are available.

Once required data has been identified and collected, the actual profile representation needs to be
considered.

2.3 Profile representation

It is necessary to represent the profiles in such a way that they can be used efficiently by the recommen-
dation techniques to producing recommendations. The representation of the profiles is usually referred
to as a model. Two classical representations is the user-item matrix model, commonly used by recom-
mender systems implementing the CF approach, and the vector space model, commonly used in systems
implementing the CBF approach. Montaner presents in [Montaner et al., 2003] several different repre-
sentations for profiles that have been proposed and used in different approaches. We will however be
using simple set models for all profiles. User profiles will be represented as rating models and transaction
models, and item profiles will be represented as rating models, transaction models and attribute models.

2.3.1 User rating models

A user rating model consists of all items rated by the user. That is, if u is a user, then ur is the (for
simplicity assumed) non-empty set of items the user has rated and rui is the rating given to item i by
the user. The number of items rated by the user is denoted using |ur|.

2.3.2 User transaction models

A user transaction model consists of all items the user has purchased. That is, if u is a user then ut
is the (for simplicity assumed) non-empty set of items the user has purchased. The number of items
purchased by the user is denoted using |ut|.
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2.3.3 Item rating models

A item rating model consists of all users that have rated the item. That is, if i is a item, then ir is the
(for simplicity assumed) non-empty set of users that have rated the item and rui is the rating given by
user u to item i. The number of users that have rated the item is denoted using |ir|.

2.3.4 Item transaction models

A item transaction model consists of all users that have purchased the item. That is, if i is a item then
it is the (for simplicity assumed) non-empty set of users that have purchased the item. The number of
users that have purchased the item is denoted using |it|.

2.3.5 Item attribute models

A item attribute model consists of all attribute of one type that a item has. E.g. movies have many
different types of attributes, such as genres, directors, actors, release year, keywords etc. A item’s genre
attribute model thus consists of all the movies genres. That is, if i is an item, then igenre is the non-
empty set of all genres associated with the item. The number of genres that the item has is denoted
using |igenre|. The same notation applies to any attribute type.

2.4 Recommendation techniques

Recommendation techniques will be described using simple pseudo code that outlines how available
profile models are used to generate recommendations.

For all the described techniques the common assumption is made that all the rating data uses the same
rating scale [Rmin, Rmax]. It is always assumed that there is a set U = {u1, u2, . . . } and I = {i1, i2, . . . }
consisting of all users and items respectively for which necessary profile models are available. In some
cases it will also be assumed that there is a set T = {t1, t2, . . . } of attribute types. The profile models
previously presented will be used.

The techniques that generate predictions outline how to predict ratings on all available items for
all available users on items the users have not rated, this gives a better idea of the complexity of the
algorithm than simply showing how to predict for the active user on the active item. The techniques do
not outline nor discuss how to introduce new users or items into the system.

The techniques in addition to assuming the presence of required profile models also assume that
necessary constants have been specified.

2.4.1 Baseline Statistical Filtering (BASELINESF)

Simple statistical recommendation technique for making predictions. The idea is to make use directly
of the active user’s rating model or the active item’s rating model. Alternatively the whole populations
opinion is used, however without forming any nearest neighborhoods or similar (collaborative filtering
without neighborhoods). While rating data is assumed, it is not necessary for e.g. the random prediction
algorithm, the ratings are then simply ignored, however the basic idea is that this baseline technique
should serve as a statistical based baseline to compare other techniques against.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir.
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baselinesf(U,I)
1 P ← �
2 Foreach u ∈ U

3 Pu ← �
4 Foreach i ∈ I

5 If rui /∈ ur Then
6 p← predict(u, i)
7 next(Pu)← (i, p)
8 Return P

On line 7 the notation next(n) is introduced, this is a standard notation meaning that a new element is
added to the next free index in the list N. It is necessary that N is a list as we wish to be able to sort
the list and as the prediction algorithm will need to be able to iterate over it in sorted order.

User mean prediction algorithm

Uses the active user’s rating mean as a prediction on all items for the active user.

predict(u,i)
1 p← ur

2 Return p

Item mean prediction algorithm

Uses the active item’s rating mean as a prediction for all users.

predict(u,i)
1 p← ir
2 Return p

Random prediction algorithm

Makes a prediction by generating a uniformly random number in the rating interval. Multiple requests
for a prediction on the same item for the same user may thus result in different predictions.

predict(u,i)
1 p← random(Rmin, Rmax)
2 Return p

Population deviation from mean prediction algorithm

Considers the active user’s mean rating and the entire populations deviation from their mean rating on
the active item when making a baseline prediction.

predict(u,i)

1 p← ur +
∑

rni∈ir

(rni−nr)
|ir|

2 If p < Rmin Then p← Rmin

3 If p > Rmax Then p← Rmax

4 Return p
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2.4.2 User based Collaborative Filtering (UCF)

Recommendation technique based on the collaborative filtering approach. Predictions are based on a
user neighborhood sorted in descending order of similarity with the active user. User similarities are
calculated based on user rating models.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir.

ucf(U,I)
1 P ← �
2 Foreach u ∈ U

3 N ← �
4 Foreach n ∈ U

5 If n 6= u Then
6 s← similarity(ur, nr)
7 If s 6= Failed Then
8 next(N)← (n, s)
9 sort(N) in descending order of similarity
10 Pu ← �
11 Foreach i ∈ I

12 If rui /∈ ur Then
13 p← predict(u, i, N)
14 next(Pu)← (i, p)
15 Return P

The neighborhood N created on lines 2-8 is the heart of the technique. The technique when creating
the set of all neighbors for the active user u will only ignore neighbors for which no similarity can be
calculated by the similarity algorithm. The idea is that it is up to a prediction algorithm to select a
suitable subset of neighbors to use when predicting, but since the nearest neighborhood of users can be
selected in many different ways the decision of how to do this is left upon a prediction algorithm.

In the evaluation we used this technique together with a similarity algorithm using the common
Pearson correlation coefficient as a similarity measure and a prediction algorithm using the common
weighted deviation from mean prediction function.

Pearson similarity algorithm

The Pearson correlation coefficient is used to determine similarity between two user (or item) rating
models ur and nr.

The constants OT (Overlap Threshold or ”Corated” Threshold), ST (Significance Weighting Thresh-
old) and MNS/MPS (Minimum Negative/Positive Similarity Threshold) specify different threshold
required for the similarity calculation to succeed. OT , MNS and MPS are not commonly used, but
are shown here to demonstrate possible extensions to the similarity algorithm. ST is however commonly
used and is recommended to be set between 20 to 50 [Herlocker, 00].

Similarity returned is a continuous value in the range [−1,+1] representing the similarity between
two rating models. −1 means perfect dissimilarity. 0 means no linear correlation existed (note that if
correlation can’t be calculated or thresholds aren’t met, Failed is returned, not 0), it is still possible the
two rating models are dissimilar or similar. +1 means perfect similarity.
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similarity(ur,nr)
1 Overlap← {i|rui ∈ ur ∧ rni ∈ nr}
2 If |Overlap| < 2 Then Return Failed

3 If |Overlap| < OT Then Return Failed

4

s←
∑

i∈Overlap (rui × rni)−
P

i∈Overlap rui×
P

i∈Overlap rni

|Overlap|√(∑
i∈Overlap r2

ui −
(P

i∈Overlap rui)2

|Overlap|

)
×
(∑

i∈Overlap r2
ni −

(P
i∈Overlap rni)2

|Overlap|

)

5 If s = NaN Then Return Failed

6 If |Overlap| < ST Then s← s× |Overlap|
s

7 If MNS < s AND s < MPS Then Return Failed

8 Return s

The formula for calculating the Pearson correlation coefficient on line 4 uses no rating means and as such
is suitable to use in any implementation of the formula as no separate mean calculation step for co-rated
items is needed, the whole correlation coefficient can be calculated in one iteration over the set of co-rated
items for the two users.

On line 5 there is a check whether the Pearson correlation coefficient is NaN, this check is needed as
the denominator will sometimes be zero (occurs in extreme cases, such as when both users have rated
100 items, all with 5’s).

Weighted deviation from mean prediction algorithm

Neighbors weighted deviation from their mean rating is used when making a prediction. The constants
NSmin (Minimum Neighborhood Size) and NSmax (Maximum Neighborhood Size) specify different
thresholds required for the prediction to succeed. Note that the entire neighborhood is searched through
for neighbors that have rated the active item, the algorithm does not simply consider e.g. the first
NSmax neighbors when creating the neighborhood of predictors, this means that if the neighborhood is
large enough then NSmax neighbors can usually be found, however they are most likely not always the
neighbors with the highest similarity with the active user.

predict(u,i,N)
1 If |N | < NSmin Then Return Failed

2 NN ← �
3 Foreach (n, s) ∈ N

4 If rni ∈ nr

5 next(NN)← (n, s)
6 If |NN | = NSmax Then Break

7 If |NN | = 0 Then Return Failed

8 If |NN | < NSmin Then Return Failed

9 p← ur +
P

(n,s)∈NN (rni−nr)×sP
(n,s)∈NN |s|

10 If p = NaN Then Return Failed

11 If p < Rmin Then p← Rmin

12 If p > Rmax Then p← Rmax

13 Return p

2.4.3 Random Neighbors User based Collaborative Filtering (RNUCF)

Recommendation technique based on the collaborative filtering approach. Predictions are based on a
user neighborhood sorted in random order. No user similarities are calculated, instead all neighbors are
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assigned similarity 1.0 with the active user. The technique was only implemented in order to evaluate how
the prediction algorithms used for the UCF technique work on a randomly sorted neighborhood. While
we could have simply implemented prediction algorithms that creates a random nearest neighborhood,
we chose to simply implement a second technique for the purpose. Assume that each user u ∈ U has a
user rating model ur, and that each item i ∈ I has a item rating model ir.

rnucf(U,I)
1 P ← �
2 Foreach u ∈ U

3 N ← �
4 Foreach n ∈ U

5 If n 6= u Then
6 next(N)← (n, 1.0)
7 permutate(N) randomly
8 Pu ← �
9 Foreach i ∈ I

10 If rui /∈ ur Then
11 p← predict(u, i, N)
12 next(Pu)← (i, p)
13 Return P

2.4.4 Trust User based Collaborative Filtering (TRUSTUCF)

Recommendation technique based on the collaborative filtering approach. Predictions are based on a
user neighborhood sorted in descending order of trust. Trust in a neighbor is a combination of the
neighbor’s similarity with the active user and the neighbors trusted ability to predict for the active item.
User similarities are calculated based on user rating models. Users that have rated many of the items
that are most similar to the active item are trusted to be able to predict reliably for it. Item similarities
are calculated based on item rating models.

The constant MS (Model Size) specifies the size of the item neighborhoods to keep in memory. When
trust is calculated for a neighbor, the trust will be based on how many of the MS most similar items to
the active item the neighbor has rated.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir.
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trustucf(U,I)
1 M ← item-models(I)
2 P ← �
3 Foreach u ∈ U

4 N ← user-neighborhood(u, U)
5 Foreach i ∈ I

6 If rui 6= ur Then
7 TN ← trust-neighborhood(i,N,M)
8 p← predict(u, i, TN)
9 next(Pu)← (i, p)
10 Return P

item-models(I)
11 M ← �
12 Foreach i ∈ I

13 N ← �
14 Foreach j ∈ I

15 If i 6= j Then
16 s← similarity(ir, jr)
17 If s 6= Failed Then
18 next(N)← (j, s)
19 sort(N) in descending order of similarity
20 Mi ← range(N, 1,MS)
21 Return M

user-neighborhood(u,U)
22 N ← �
23 Foreach n ∈ U

24 If n 6= u Then
25 s← similarity(ur, nr)
26 If s 6= Failed Then
27 next(N)← (n, s)
28 Return N

trust-neighborhood(i,N,M)
29 TN ← �
30 Foreach (n, s) ∈ N

31 t← 0
32 Foreach (j, ) ∈Mi

33 If rnj ∈ nr Then
34 t + +
35 t← t

MS

36 s← s× t

37 next(TN)← (n, s)
38 sort(TN) in descending order of similarity
39 Return TN

As can be seen on line 1 a model step is introduced in which item similarities for all items are precal-
culated, the MS most similar items for each item are saved. This step is necessary as it would be too
costly to recalculate them each time they are needed. Note that on line 20 the range(L, S, E) method
is introduced, this method simply extracts the elements on index S to E in the list L, additionally is
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E < S the whole list is returned.
On line 4 a regular user neighborhood N is calculated as in e.g. the UCF technique, for clarity

it has been placed in a separate method. However unlike the UCF technique, the neighborhood will
not be passed directly to the prediction algorithm. Instead, once an active item has been selected the
neighborhood will on line 7 be passed to a method that modifies the neighbor similarities based on how
much each neighbor is trusted to be able to predict for the active item. A neighbor that e.g. has not
rated any item similar to the active is not trusted to be able to predict for the item at all and will have
the similarity down weighted to zero.

2.4.5 Common Items Prioritizing User based Collaborative Filtering (CIPUCF)

Recommendation technique based on the collaborative filtering approach. Predictions are based on a
user neighborhood sorted in descending order of common items with the active user. User similarities are
still calculated with the active user, however the neighborhood is unlike the UCF technique not sorted
based on the similarities. User similarities are calculated based on user rating models.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir.

cipucf(U,I)
1 P ← �
2 Foreach u ∈ U

3 N ← �
4 Foreach n ∈ U

5 If n 6= u Then
6 s← similarity(ur, nr)
7 If s 6= Failed Then
8 next(N)← (n, s)
9 sort(N) in descending order of common items
10 Pu ← �
11 Foreach i ∈ I

12 If rui /∈ ur Then
13 p← predict(u, i, N)
14 next(Pu)← (i, p)
15 Return P

Line 9 will keep the previously calculated similarity between each neighbor and the active user, but the
members of list N will be sorted according to the number of items they have in common with the active
user (the step is thus quite simplified).

2.4.6 Item based Collaborative Filtering (ICF)

Recommendation technique based on the collaborative filtering approach. Predictions are based on a
item neighborhood sorted in descending order of similarity with the active item. Item similarities are
calculated based on item rating models.

The constant MS (Model Size) specifies the size of the item neighborhoods to keep in memory. The
basic assumption is that item similarities, unlike user similarities in the UCF technique, are not likely
to change as often/much as user similarities, hence a model can be build of item similarities.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir.
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icf(U,I)
1 M ← �
2 Foreach i ∈ I

3 N ← �
4 Foreach j ∈ I

5 If i 6= j Then
6 s← similarity(ir, jr)
7 If s 6= Failed Then
8 next(N)← (j, s)
9 sort(N) in descending order of similarity
10 Mi ← range(N, 1,MS)
11 P ← �
12 Foreach u ∈ U

13 Pu ← �
14 Foreach i ∈ I

15 If rui /∈ ur Then
16 p← predict(u, i, Mi)
17 next(Pu)← (i, p)
18 Return P

Keep in mind that the model size MS of the item similarity models Mi should be kept relatively small,
If we assume that the majority of users have rated very few items, suppose around 20. If a excessively
large item model size is then used, the prediction algorithm might (assuming it scans the entire item
neighborhood for items the active user has rated) end up basing all predictions on the active users ratings
on the same 20 items, simply because those 20 items are included in every single item’s neighborhood.
While those 20 items will have varying similarity with the active item, it is still important to keep this
fact in mind, especially if the prediction algorithm ignores the item similarities (e.g. the Average Rating
prediction algorithm).

Adjusted cosine similarity algorithm

The cosine angle is used as a similarity measure between two item rating models ir and jr, the cosine
formula is applied to users deviations from their rating means instead of to their actual ratings. While
this algorithm is expressed in terms of item rating models it works for user rating models as well, however
[Sarwar et al., 01] considers the adjusted cosine formula more suitable for item rating models and suggests
using Pearson for user rating models.

The constants OT (Overlap Threshold), ST (Significance Weighting Threshold) and MS (Minimum
Similarity Threshold) specify different threshold required for the similarity calculation to succeed. OT
and MS are not commonly used, but are shown here to demonstrate possible extensions to the similarity
algorithm. ST is however just as applicable here as for the Pearson similarity algorithm.

Similarity returned is a continuous value in the range [−1,+1] representing the similarity between
the two item rating models. Interpretation of similarities is similar to that of the Pearson similarity
algorithm, −1 means perfect dissimilarity, +1 perfect similarity and 0 that nothing certain could be said
about either case.
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similarity(ir,jr)
1 If |ir| = 0 OR |jr| = 0 Then Return Failed

2 s←
P

rui∈ir
(rui−ur)+

P
rui∈jr

(ruj−ur)qP
rui∈ir

(rui−ur)2×
P

rui∈jr
(ruj−ur)2

3 If s = NaN Then Return Failed

4 Overlap← {i|rui ∈ ur ∧ rni ∈ nr}
5 If |Overlap| < ST Then s← s× |Overlap|

ST

6 If s < MS Then Return Failed

7 Return s

Average rating prediction algorithm

Calculates the active user’s average rating on items that are similar to the active item. The average is
used as a prediction. Unlike the baseline prediction algorithm that uses the active user’s mean rating,
this prediction algorithm uses a subset of the items the user has rated. The subsets consists of the items
the active user has rated that are most similar to the active item.

The constants NSmin (Minimum Neighborhood Size) and NSmax (Maximum Neighborhood Size)
specify different thresholds required for the prediction calculation to succeed.

Predictions are in the range [Rmin, Rmax].

predict(u,i,N)
1 If |N | < NSmin Then Return Failed

2 NN ← �
3 Foreach (j, s) ∈ N

4 If ruj ∈ ur Then
5 next(NN)← (j, s)
6 If |NN | = NSmax Then Break

7 If |NN | = 0 OR |NN | < NSmin Then Return Failed

8 p←
P

(j,s)∈NN ruj

|NN |
9 Return p

Weighted sum prediction algorithm

Uses the active user’s ratings on items that are most similar to the active item when making a prediction.
The active user’s ratings on items are weighted using the items similarity with the active item.

The constants NSmin (Minimum Neighborhood Size) and NSmax (Maximum Neighborhood Size)
specify different thresholds required for the prediction calculation to succeed.

Predictions are in the range [Rmin, Rmax].

predict(u,i,N)
1 If |N | < NSmin Then Return Failed

2 NN ← �
3 Foreach (j, s) ∈ N

4 If ruj /∈ ur Then next(NN)← (j, s)
5 If |NN | = NSmax Then Break

6 If |NN | = 0 OR |NN | < NSmin Then Return Failed

7 p←
P

(j,s)∈NN ruj×sP
( ,s)∈NN |s|

8 If p = NaN Then Return Failed

9 If p < Rmin Then p← Rmin

10 Return p
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2.4.7 Random Neighbors Item based Collaborative Filtering (RNICF)

Recommendation technique based on the content based filtering approach. Predictions are based on a
item neighborhood for the active item sorted in random order. No item similarities are calculated.

The constant MS (Model Size) specifies the size of the item neighborhoods to keep in memory.
Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating

model ir.

rnicf(U,I)
1 M ← �
2 Foreach i ∈ I

3 N ← �
4 Foreach j ∈ I

5 If i 6= j Then
6 next(N)← (j, 1.0)
7 permutate(N) randomly
8 Mi ← range(N, 1,MS)
9 P ← �
10 Foreach u ∈ U

11 Pu ← �
12 Foreach i ∈ I

13 If rui /∈ ur Then
14 p← predict(u, i, Mi)
15 next(Pu)← (i, p)
16 Return P

2.4.8 Personalized Content Based Filtering (PCBF)

Recommendation technique based on the content based approach. Predictions are based on a item
neighborhood sorted in descending order of similarity with the active item. Item similarities are calculated
based on item attributes. An item has one or more attribute type models, the total item similarity is a
normalized weighted linear sum over all attribute models.

The ICF and PCBF techniques are similar, essentially only differing in how item similarities are
calculated, however the fact the PCBF technique doesn’t require any ratings on all items it predicts for
(it is enough that the active user has rated some of the items similar to the active item) means a possibly
increased coverage as long as attribute models are available for all items.

The constant MS (Model Size) specifies the size of the item neighborhoods to keep in memory.
Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating

model ir. Assume that each item has for each attribute type t ∈ T a attribute type model it. Assume
that for each attribute type t there is a weight wt and a similarity measure simt.
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pcbf(U,I,T)
1 wtot ←

∑
t∈T wt

2 Foreach t ∈ T

3 wt ← wt

wtot

4 M ← �
5 Foreach i ∈ I

6 N ← �
7 Foreach j ∈ I

8 If i 6= j Then
9 s← 0
10 Foreach t ∈ T

11 s← s + simt(it, jt)× wt

12 If s 6= Failed Then
13 next(N)← (j, s)
14 sort(N) in descending order of similarity
15 Mi ← range(N, 1,MS)
16 P ← �
17 Foreach u ∈ U

18 Pu ← �
19 Foreach i ∈ I

20 If rui /∈ ur Then
21 p← predict(u, i, Mi)
22 next(Pu)← (i, p)
23 Return P

2.4.9 Common attribute similarity algorithm

Defines similarity between two item attribute models as the ratio of shared attributes, against the total
number of distinct attributes, between the two item attribute models.

The constants OT (Overlap Threshold), ST (Significance Weighting Threshold) and MS (Minimum
Similarity Threshold) specify different threshold required for the similarity calculation to succeed. OT
and MS are not commonly used, but are shown here to demonstrate possible extensions to the similarity
algorithm.

Similarity returned is a continuous value in the range [0, 1]. 0 means no similarity and 1 means perfect
similarity.

similarity(ia,ja)
1 Overlap← ia ∩ ja

2 If |Overlap| < OT Then Return Failed

3 Distinct← ia ∪ ja

4 If |Distinct| = 0 Then Return Failed

5 s← |Overlap|
|Distinct|

6 If |Overlap| < ST Then s← s× |Overlap|
ST

7 If s < MS Then Return Failed

8 Return s

Cosine similarity algorithm

The cosine angle is used as a similarity measure between two item attribute models. Since attribute
models are used the original cosine formula can be simplified significantly (as shown on line 4).

60



The constants OT (Overlap Threshold), ST (Significance Weighting Threshold) and MS (Minimum
Similarity Threshold) specify different threshold required for the similarity calculation to succeed. OT
and MS are not commonly used, but are shown here to demonstrate possible extensions to the similarity
algorithm.

Similarity returned is a continuous value in the range [0, 1]. 0 means no similarity and 1 means perfect
similarity.

similarity(ia,ja)
1 Overlap← ia ∩ ja

2 If |Overlap| < 2 Then Return Failed

3 If |Overlap| < OT Then Return Failed

4 s← Overlap√
|ia|×|ja|

5 If s = NaN Then Return Failed

6 If |Overlap| < ST Then s← s× |Overlap|
ST

7 If s < MS Then Return Failed

8 Return s

Same decade similarity algorithm

Assumes two item attribute models contain as first and only element a integer representing a year, the
two attribute models are considered similar if they belong to the same decade. Since this is the movie
domain, such a similarity measure makes sense, movies belonging to different decades can very roughly
be seen to often have different characteristics.

Similarity returned is 1 if the two item attribute models belong to the same decade (in the same year)
or 0 if they’re from different decades.

similarity(ia,ja)
1 If |ia| 6= 1 OR |ja| 6= 1 Then Return Failed

2 If same-decade(first-element(ia),first-element(ja)) Then Return 1.0
3 Return 0.0

2.4.10 Top-N User based Collaborative Filtering (TOPNUCF)

Recommendation technique makes predictions for users using the UCF recommendation technique and
creates Top-N ranking lists by sorting the predictions for each user in descending order of prediction and
recommending the Top-N items with highest predictions.

2.4.11 Top-N Item based Collaborative Filtering (TOPNICF)

Recommendation technique makes predictions for users using the ICF recommendation technique and
creates Top-N ranking lists by sorting the predictions for each user in descending order of prediction and
recommending the Top-N items with highest predictions.

2.4.12 Top-N Personalized Content Based Filtering (TOPNPCBF)

Recommendation technique makes predictions for users using the PCBF recommendation technique and
creates Top-N ranking lists by sorting the predictions for each user in descending order of prediction and
recommending the Top-N items with highest predictions.

2.4.13 Top-N Content Based Filtering (TOPNCBF)

Recommendation technique makes Top-N ranking list recommendations based on item similarities. Item
similarities are calculated based on attribute models.
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The constant MS (Model Size) specifies the size of the item neighborhoods to keep in memory. The
constant TN specifies the size of the Top-N ranking lists to recommend.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a transaction
model it. Assume that each item has for each attribute type t ∈ T a attribute type model it. Assume
that for each attribute type t there is a weight wt and a similarity measure simt.

topncbf(U,I,T)
1 wtot ←

∑
t∈T wt

2 Foreach t ∈ T

3 wt ← wt

wtot

4 M ← �
5 Foreach i ∈ I

6 N ← �
7 Foreach j ∈ I

8 If i 6= j Then
9 s← 0
10 Foreach t ∈ T

11 s← s + simt(it, jt)× wt

12 If s 6= Failed Then
13 next(N)← (j, s)
14 sort(N) in descending order of similarity
15 Mi ← range(N, 1,MS)
16 R← �
17 Foreach u ∈ U

18 R← ranking-list(u, M)
19 Ru ← range(R, 1, TN)
20 Return R

Similar items ranking list algorithm

Ranking list is generated by considering items with all items purchased by the active user.

ranking-list(u,M)
1 R← �
2 Foreach i ∈ ut

3 Foreach (i, s) ∈Mi

4 If R[i] = NULL Then
5 R[i] = s

6 Else
7 R[i]+ = s

8 sort(R) in descending order of similarity
9 Return R

2.4.14 Transaction based Top-N User based Collaborative Filtering (TBTOP-
NUCF)

Recommendation technique makes Top-N ranking list recommendations based on a user neighborhood
sorted in descending order of similarity with the active user. User similarities are calculated based on
user transaction models.

The constant TN specifies the size of the Top-N ranking lists to recommend.
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Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a transaction
model it. Assume that each item has for each attribute type t ∈ T a attribute type model it. Assume
that for each attribute type t there is a weight wt and a similarity measure simt.

tbtopnucf(U,I,T)
1 R← �
2 Foreach u ∈ U

3 N ← �
4 Foreach n ∈ U

5 If u 6= n Then
6 s← similarity(ut, nt)
7 If s 6= Failed Then
8 next(N)← (n, s)
9 sort(N) in descending order of similarity
10 R← ranking-list(u, N)
11 Ru ← range(R, 1, TN)
12 Return R

Cosine similarity algorithm (Simplified transaction case)

The cosine angle is used as a similarity measure between two transaction models. The similarity algorithm
is the same as for attribute models, except it works with transaction models.

Frequent items ranking list algorithm

Ranking list is generated by considering item frequencies among neighbors of the active user.
The constant NS (Neighborhood Size) specifies the (exact) number of neighbors of the active user

to consider.

ranking-list(u,N)
1 If |N | < NS Then Return Failed

2 NN ← range(N, 1, NS)
3 R← �
4 Foreach n ∈ NN

5 Foreach i ∈ nt

6 If R[i] = NULL Then R[i] = 1
7 Else R[i] + +
8 sort(R) in descending order of similarity
9 Return R

2.4.15 Transaction based Top-N Item based Collaborative Filtering (TBTOP-
NICF)

Recommendation technique makes Top-N ranking list recommendations based on a item neighborhood
sorted in descending order of similarity with the active item. Item similarities are calculated based on
item transaction models.

The constant MS (Model Size) specifies the size of the item neighborhoods to keep in memory. The
constant TN specifies the size of the Top-N ranking lists to recommend.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a transaction
model it. Assume that each item has for each attribute type t ∈ T a attribute type model it. Assume
that for each attribute type t there is a weight wt and a similarity measure simt.
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tbtopnicf(U,I,T)
1 M ← �
2 Foreach i ∈ I

3 N ← �
4 Foreach j ∈ I

5 If i 6= j Then
6 s← similarity(it, jt)
7 If s 6= Failed Then
8 next(N)← (j, s)
9 sort(N) in descending order of similarity
10 Mi ← range(N, 1,MS)
11 R← �
12 Foreach u ∈ U

13 R← ranking-list(u, N)
14 Ru ← range(R, 1, TN)
15 Return R

2.5 Evaluation of recommender systems

“Much theorizing has gone into optimum cell size. I think that history shows that a cell of three
is best - more than three can’t agree on when to have dinner” – Professor Bernardo de La Paz

Recommender systems work with datasets to produce recommendations. Recommender systems that
produce personalized recommendations always work with user datasets, such a dataset in current research
consists of either user ratings or user ”transactions” (information about which items a user has considered
relevant). Evaluations are made of such recommender systems using all or parts of available user data as
evaluation data, which is split into training and test data, and any of an assortment of suitable evaluation
metrics. An evaluation metric for a recommender system is currently focused either on accuracy of
predictions, or relevance of Top-N ranking lists made by the recommender system [Herlocker, 2000]. In
either case two simplifying assumptions are made, upon which all evaluations of the recommender system
are based:

1. Given any training and test data, if the recommender system is able to accurately predict, based
on the training data, ratings for items in the test data, then we assume the recommender system
will also predict correctly for new unknown data.

2. Given any training and test dataset, if the Top-N list generated by the recommender system
contains items from the test data, then the Top-N list is better than a Top-N list not containing
any items from the test data.

Both of these assumptions are flawed, if the recommender system predicts badly for the test data it
may still predict perfectly for future data. And if a Top-N list contains no relevant items, it may still be
the case all items are relevant.

The user data available is not complete, and typically can not be complete. Hence no evaluation
metric can give a true measure of how accurate the recommender system is on all future data. The
evaluation metrics however give a true measure of how accurate the recommender system is on a specific
evaluation dataset. Whether or not this accuracy holds for any future data is not guaranteed, and is not
measured either.

In order to reliably evaluate an recommender system on a given evaluation dataset, a sensible and
motivated choice of forming training and test datasets is highly necessary as well as a reliable evaluation
protocol.

If evaluation results are to be compared against other evaluation results, it is necessary to make
sure the evaluation datasets and evaluation protocols used for both evaluations are similar (preferably
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identical), otherwise comparisons and claims of better or worse results should not be made or at the very
least be made very carefully.

The evaluation metrics used for evaluating recommender systems are based on well known statistical
measures from data mining and information filtering and retrieval. However while it helps to claim the
soundness of the measures by referring to the field they come from, it is even more helpful to put them
in their new situation and therein analyze what they are measuring, and whether it is meaningful in this
new situation.

Evaluation of recommender systems is difficult and requires a great deal of thought before performed.
In this thesis, only commonly evaluation metrics are outlined.

For further discussion and more evaluation metrics (such as ROC curves) as well as an comparison
of individual evaluation metrics, please refer to [Herlocker, 2000].

2.5.1 Evaluation data

Given a user dataset, assuming for discussion it consists of ratings (the same reasoning apply to trans-
action user datasets), there are at least four factors that can be taken into account when forming the
evaluation dataset:

1. Number of users

2. Number of items

3. Number of ratings per user

4. Number of ratings per item

The evaluation data needs to contain enough users and enough items for the evaluation to be mean-
ingful. Too few users or too few items and the evaluation becomes biased towards the size of the data set.
Requiring a minimum number of ratings per user is typically sensible, since any recommender system is
unlikely to be able to predict reliably for a user before it has some minimum number of ratings for the
user. Depending on the recommender system it might also make sense to require a minimum number
of ratings per item in the evaluation data. Including such users or items, with too few ratings, in the
evaluation data means that the evaluation result can never be perfect. As such the requirement, of a user
to have rated at least enough items and a item to have at least enough ratings for a recommendation
to be at all possible, might often be a motivated and sensible requirement of the evaluation data. The
consensus being that it is not interesting to evaluate a recommender system using data it is expected to
fail on, this can be stated separately.

2.5.2 Evaluation protocols

Once the evaluation data has been prepared, a evaluation protocol must be selected. Three common
evaluation protocols are:

1. Hold out: A percentage of the evaluation data is used as training data while the remainder is left
out and used as test data.

2. All but 1: One element of the evaluation data is used as test data, maximizing the amount of data
used for training data.

3. K-fold cross validation: The evaluation data is split K times into training and test data, such that
all data is used exactly once as test data.

Of these K-fold cross validation intuitively seems most sensible, depending on the evaluation metrics
hold out or all but 1 may be most suited for each of the k cross validations. Variations of k-fold cross
validation with all but 1 may also be sensible, e.g. where k times different ratings are used for test data,
but not necessarily all ratings are used for test data.
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2.5.3 Splitting evaluation data

The split of evaluation data into training and test data is commonly done in either of the following ways:

1. Split over users: A percentage or fixed number of each user’s ratings are used as test data and the
remainder as training data.

2. Split over items: A percentage or fixed number of each item’s ratings are used as test data and the
remainder as training data.

3. Split over ratings: A percentage or fixed number of the ratings (independent of who or what has
been rated) is used as test data, and the remainder as training data.

Care should be taken whether it is sensible to allow test data to contain items that no user in the
training data has rated, or users that do not occur in the training data. The first two approaches ensures
respectively either that a user or a item occurs in both training and test data. The third approach allows
for users and items to end up in the test data that do not occur in the training data, however no bias
towards users or items to occur in both training and test data is introduced.

2.5.4 Prediction evaluation metrics

The prediction evaluation metrics measure the RS ability to predict correctly known user ratings. The
evaluation metrics use known correct ratings from a test data set and compare those against predictions
made by a RS based on a training data set.

The predictions depends on the RS. However, since the evaluation requires a evaluation dataset
consisting of ratings, the predictions must be in the same range as the ratings in the user dataset.
Otherwise it will not be possible to compare the predictions against the known correct ratings in the test
dataset.

Note that the ratings and predictions are assumed to be continuous values in the interval specified
by [Rmin, Rmax] where Rmin and Rmax are the lowest and highest rating a item can be assigned by a
user. If the actual rating scale is discrete (which it usually is), the predictions can be rounded to closest
integer, to get results that more accurately reflects the user experience.

Unless otherwise stated, evaluation metrics are intended for use with continuous predictions within
the rating range.

In addition to reporting the metrics described in this section, it is important to also report how many
users could be evaluated (successful users) and how many users could not be evaluated (failed user) and
also how many of the made predictions succeeded and how many failed [Table 2.1].

Usuccessful Number of users evaluated (which does not include users for which
no predictions could be made).

Ufailed Number of users for which no prediction could be made.
Psuccessful Number of successful predictions (as in a prediction was possible to

make) evaluated.
Pfailed Number of failed predictions (as in no prediction could be made).

Table 2.1: Additional prediction evaluation metrics.

Additionally a confusion matrix (see example explanation in [Figure 2.1]) showing distribution of
predictions per known rating, and a relevance matrix (see example explanation in [Figure 2.2]) showing
true/false positives and negatives can be generated and reported (and may often provide a more detailed
understanding of the quality of a technique, moreso than a single numeric evaluation metric which
however usually is much easier to report and compare than these matrices).
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P=1 P=2 P=3 P=4 P=5 Pfailed

R=1 72 308 414 274 43 47
R=2 27 325 1036 504 32 48
R=3 23 357 2687 2713 177 99
R=4 11 155 1964 6053 883 96
R=5 9 71 470 3739 2462 94

Figure 2.1: Confusion matrix. Whenever a successful prediction P was made for an item with a known
rating R, it is counted how often a correct rating was predicted and how often a incorrect rating (and
what it was) was predicted. For example, 2462 predictions of 5 were made when the known rating on
the item was 5, and only 9 predictions made were a 1 when the known rating was 5.

TP FP TN FN
T=2 23434 939 172 264
T=3 19640 1590 1445 2134
T=4 8962 1424 7568 6855
T=5 109 36 18022 6642

Figure 2.2: Relevance matrix. For different relevance thresholds T it is shown how many True Positives
(TP), False Positives (FP), True Negatives (TN) and False negatives (FN) that were made. If for example
T=3 it means that a item with a known rating of 3 or higher which is predicted a rating of 3 or higher
is a TP, whereas had it been predicted something below 3 it would have been a FN. Similarly a item
with a known rating below 3 which is predicted a rating above or equal to 3 is a FP, and had it been
predicted a rating below 3 it would have been a TN.

Coverage

Coverage =
Psuccessful

Psuccessful + Pfailed
(2.1)

Where

Psuccessful is the number of successful predictions (as in a prediction was possible to make) evaluated.

Pfailed is the number of failed predictions (as in no prediction could be made).

Keep in mind that it is easy to get 100% coverage, simply implement a RS that makes ”default” pre-
dictions using some baseline technique (average item rating, average user rating or similar) whenever
the ”main” prediction fails, however accuracy measures such as MAE may then suffer. While a default
prediction is a successful prediction, it is usually more interesting to measure coverage that does not
include default predictions

Average User Coverage

CoverageAU =
∑

Ucoverage

Usuccessful
(2.2)

Where∑
Ucoverage

is the sum over all user’s individual coverage, each user’s coverage is calculated as the number
of successful predictions made for the user divided by the total number of predictions attempted
to be made for the user (e.g. the sum of the number of successful predictions and number of failed
predictions for the user).

Usuccessful is the number of users evaluated (which does not include users for which no predictions could
be made).
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Mean Absolute Error (MAE)

MAE =
Perror

Psuccessful
(2.3)

Where

Perror is the sum of the error for all evaluated predictions, the error in the evaluated predictions is
calculated as the absolute value of the difference between the predicted rating PR and the actual
rating AR, e.g. —AR-PR—.

Psuccessful is the number of successful predictions (as in a prediction was possible to make) evaluated.

Keep in mind the coverage, when coverage goes down (e.g. number of failed predictions increase) less
successful predictions will be involved in the MAE calculation, significantly skewing results for the whole
test set if coverage is not considered.

MAER using rounded ratings and predictions can also be calculated to better evaluate the user
experience.

Average User MAE

MAEAU =
UMAE

Usuccessful
(2.4)

Where∑
UMAE

is the sum over all user’s individual MAE, each user’s MAE is calculated as the absolute value
of the difference between the predicted rating and the actual rating divided with the number of
predictions made for the user.

Usuccessful is the number of users evaluated (which does not include users for which no predictions could
be made).

MAERAU using rounded ratings and predictions can also be calculated to better evaluate the user
experience.

Normalized Mean Absolute Error (NMAE)

NMAE =
MAE

Rmax −Rmin
(2.5)

The MAE for the predictions set is divided with the maximum possible prediction error in order to get
a number between 0 and 1 where 0 means all predictions were correct and 1 means all predictions were
as wrong as they could possibly be.

Rmax−Rmin gives the maximum possible MAE, as no prediction error can be larger than the distance
between the largest Rmax and smallest Rmin ratings on the rating scale. E.g. suppose actual rating is
smallest possible rating 1 and prediction made is largest possible rating 5, then the prediction error is 4
which is also the maximum possible prediction error.

NMAE using rounded ratings and predictions can also be calculated to better evaluate the user
experience.

Average User NMAE

NMAEAU =
UNMAE

Usuccessful
(2.6)

Where∑
UNMAE

is the sum over all user’s individual NMAE, each user’s NMAE is calculated as the user’s
individual MAE divided by the maximum possible prediction error.

Usuccessful is the number of users evaluated (which does not include users for which no predictions could
be made).

NMAERAU using rounded ratings and predictions can also be calculated to better evaluate the user
experience.
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Mean Squared Error (MSE)

MSE =
P 2

error

Psuccessful
(2.7)

Where

P 2
error is the sum of the squared prediction error for all evaluated predictions.

Psuccessful is the number of successful predictions (as in a prediction was possible to make) evaluated.

Average User MSE

MSE =
∑

UMSE

Usuccessful
(2.8)

Where∑
UMSE is the sum over all user’s individual MSE, each user’s MSE is calculated as the user’s individual

MAE squared.

Usuccessful is the number of users evaluated (which does not include users for which no predictions could
be made).

MSE using rounded ratings and predictions can also be calculated to better evaluate the user experience.

Root Mean Squared Error (RMSE)

RMSE =
√

MSE (2.9)

The square root of the MSE for the prediction set is taken to get scaled down error measure where
higher values are closer together.

RMSERAU using rounded ratings and predictions can also be calculated to better evaluate the user
experience.

Average User RMSE

RMSEAU =
∑

URMSE

Usuccessful
(2.10)

Where∑
URMSE is the sum over all user’s individual RMSE, each user’s RMSE is calculated as the square

root of each user’s individual MSE.

Usuccessful is the number of users evaluated (which does not include users for which no predictions could
be made).

Correctness

Correctness =
Pcorrect

Psuccessful
(2.11)

Where

Pcorrect is the number of rounded predictions that were correct, e.g. matched the known correct rounded
rating.

Psuccessful is the number of successful predictions (as in a prediction was possible to make) evaluated.
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2.5.5 Ranking evaluation metrics

The ranking evaluation metrics measure the RS ability to assemble Top-N ranking lists with known
relevant items.

The evaluation metrics assumes that the test user models in the evaluation data consists of items
that the user would like to see returned in a Top-N list. For transaction models it is assumed all items
are relevant since they were purchased. For rating models it is assumed that since the user rated an
item, the user wouldn’t have minded seeing it in a Top-N list. Thus the evaluation metrics measure
whether the Top-N list contains e.g. movies the user would’ve shown interest in, not necessarily whether
it contains movies the user will like.

In addition to the basic assumption made for evaluating Top-N ranking lists, it can be said that the
presence of one known relevant item hopefully gives some credibility to the other items returned in the
Top-N lists. Formulated another way, the presence of a relevant item in the Top-N list hopefully increases
the probability that the other items in the Top-N list, for which the test model contains no data, are
also relevant [McLaughlin & Herlocker, 04].

It would also be possible to consider only the items the user has rated highly as relevant and treat
those not rated highly as non-rated (they become part of the set of items not rated by the user). This can
be accomplished by using a rating threshold and treat items rated equal to or above the rating threshold
as relevant. The rating threshold can either be global for all users or possibly be individual for each user
(e.g. use the user’s mean rating).

Alternatively items below the rating threshold could be considered as known non-relevant instead of
being treated as non-rated. By the same assumptions made for the presence of known relevant items, it
is possible to then check for the presence of known non-relevant items (this is not the same as unrated
items). The presence of known non-relevant items would then indicate a bad Top-N list. Similarly it
can also be assumed that the presence of a known non-relevant item in a Top-N list most likely increases
the likelihood that the other items in the Top-N list, for which the test model contains no data, are also
non-relevant.

Evaluations considering only items with ratings above (or as suggested below) a rating threshold, are
made by using training/test data sets where the test data only consists of ratings meeting the rating
threshold. Note that it makes little sense to include in the test rating data items that are known non-
relevant if those items are just ignored during the evaluation. While it would be possible to use a test
model consisting of both known relevant and known non-relevant items and at evaluation time check for
the presence of both in the Top-N list, the only way to measure the accuracy of such a system using
the common evaluation metrics presented in this paper, would still be by measuring independently recall
and precision of known relevant and known non-relevant items. That said, it might be interesting to
attempt a accuracy measure that simultaneously checks for the presence of known relevant and known
non-relevant items. (E.g. what exactly does it mean that recall is 20% for known relevant items and 20

Another alternative to evaulating ranking lists is to within a given Top-N list consider only the rated
items and ignore the non rated items during evaluation, this would however lead to underestimates and
will not be considered further. (E.g. in a Top-100 list, perhaps only 4 items have been rated by the user,
two favourably and two negatively, ignoring non-rated items would give e.g. a precision of 2/4=50%,
while treating non-rated as non-relevant and rated as relevant would give a precision of 4/100=4%.)

In addition to reporting the metrics described in this section, it is important to also report how
many users could be evaluated (successful users) and how many users could not be evaluated (failed
user). Additionally number of evaluated users with no relevant items returned and average size of Top-N
ranking list can be reported [Table 8].
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Usuccessful Number of successful users evaluated (excluding users for which no
recommendations could be made, but including users with Top-N lists
containing no relevant items).

Ufailed Number of failed users that could not be evaluated (Top-N list empty,
no recommendations at all was possible for the user).

TNsuccessful Number of successful Top-N lists (as in contains at least one relevant
item).

TNfailed Number of failed Top-N lists (as in contains no relevant items, in-
cludes empty Top-N lists).

TNa Average size of Top-N ranking list. Expected to be N, but may be
less if N recommendations is not possible for all users.

Table 2.2: Additional ranking evaluation metrics.

Coverage

Coverage =
TNsuccessful

TNfailed
(2.12)

Where

TNsuccessful is the number of successful Top-N lists (as in contains at least one relevant item).

TNfailed is the number of failed Top-N lists (as in contains no relevant items, includes empty Top-N
lists).

Recall

Recall =
RIreturned

RI
(2.13)

Where

RIreturned is the total number of relevant items returned over all users.

RI is the total number of known relevant items that could have been returned.

Note that the size of the Top N ranking list might make it impossible to get a perfect recall, e.g. N=10
but user has rated 2000 items making it impossible to recall all relevant items. However recall relates
to precision, and precision typically goes down if we increase recall, hence a perfect recall isn’t always
wanted, but a good balance between recall and precision typically is.

Average User Recall

RecallAU =
∑

Urecall

Usuccessful
(2.14)

Where∑
Urecall is the sum over all users of each users individual recall, which is the number of returned

relevant items in the user’s Top-N list divided by the total number of known relevant items (or n
if number of known items exceeds n in order to only evaluate if what could possibly be returned
was returned).

Usuccessful is the number of successful users evaluated (excluding users for which no recommendations
could be made, but including users with Top-N lists containing no relevant items).

The max number of known relevant items that can be recalled for the user is thus equal to the size of
the user’s test data set and the size of the Top-N list, do not go by the size of the test data set as it
might contain more than n items, in which case a perfect recall will never be achieved and measurement
would be skewed towards smaller recall data sets.
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Precision

Precision =
RIreturned

Ireturned
(2.15)

Where

RIreturned is the total number of relevant returned items over all users.

Ireturned is the total number of returned items over all users.

Precision tells us how many of the returned items are known to be relevant, however keep in mind that
we are not working with complete data, we do not know of all items that are relevant to the user, hence
precision is not wanted to be perfect.

Average User Precision

PrecisionAU =
∑

Uprecision

Usuccessful
(2.16)

Where∑
Uprecision is the sum over all users of each users individual precision, which is the user’s recall divided

with the number of items returned in the users Top-N list (which is less than or equal to n in order
to not skew results towards small test sets that can fit in the Top-N list).

Usuccessful is the number of successful users evaluated (excluding users for which no recommendations
could be made, but including users with Top-N lists containing no relevant items).

(Breeze’s / Halflife) Utility

Utility =
Utilitytotal

Utilitymax
(2.17)

Where

Utilitytotal is the sum over all users of each user’s individual utility Ra, where Ra is defined by Breeze
as:

Ra =
∑

j

max(vaj − d, 0)

2
j−1
a−1

≈
∑

j

1

2
j−1
a−1

(2.18)

Where j is the position (starting at 1) in the Top-N list of a relevant item. The constant a, called
the halflife constant, is a guess of which position in the Top-N list there is a 50% chance of user
looking at.

The summation is over relevant items in the Top-N list, relevant items in early positions in the
Top-N list have a high utility for the user, whereas items further down have a lower utility as the
user isn’t as likely to view those. Non relevant items serve to push relevant items further down
the Top-N list, thus decreasing the utility of the relevant items in the Top-N list. The choice of
a is made heuristically, the idea is that a user isn’t likely to look at the 100th item in a top 100
list, however the first 5 are very likely to be viewed, hence 5 might be a suitable halflife constant.
Breeze uses 5 [Breese et al., 98].

The term max(vaj − d, 0), with vaj denoting user a’s rating (Breeze calls them votes) on item j,
causes items with ratings below what Breeze calls the ”default vote” d to be ignored. Assuming
a rating scale of 1-5 the constant d can be chosen to be the middle of the rating scale, e.g. 3, in
which case items a user has rated with 1,2 or 3 would be ignored and not increase the utility if
encountered in the Top-N list. However, the idea of a ”default vote” is impractical (not all system
makes ”default votes”) as well as not very meaningful. Ignoring the ratings all together makes more
sense, since it was initially stated that the evaluation is based on the assumption the user model
only contains relevant items. A low rating doesn’t indicate a lower relevance by that assumption.
Thus it is motivated to replace the term max(vaj−d, 0) with 1 to simplify the formula and make it
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more understandable and useable for both rating and transaction data. With this new formulation
the utility of the item at the ”halflife” position is always 0.5. Unless otherwise noted the simplified
version of Breeze’s utility will be used.

Utilitymax is the sum over all users of each users individual max utility Rm, where Rm is defined as:

Rm =
∑

j

1

2
j−1
a−1

(2.19)

Where j goes from 1 to number of known relevant items or the size of the Top-N list. E.g. the
maximum utility is achieved when either all known relevant items are at the top of the user’s Top-N
list, or when the entire Top-N list consists of known relevant items.

Average User (Breeze’s / Halflife ) Utility

UtilityAU =
∑

Uutility (2.20)

Where∑
Uutility is the sum over all users of each user’s individual utility, which is the user’s utility divided

with the user’s max utility.

Usuccessful is the number of successful users evaluated (excluding users for which no recommendations
could be made, but including users with Top-N lists containing no relevant items).

F1

F1 =
2×Recall × Precision

Recall × Precision
(2.21)

Since recall and precision complement each other, e.g. low recall typically occurs with high precision,
and low precision occurs with high recall, both measures tell more about the situation than one alone,
the F1 metric thus aims to combine both measures to get a accuracy metric of higher quality. A high
value of the F1 metric ensurse that both precision and recall was reasonably high.

Average User F1

F1AU =
∑

Uutility

Usuccessful
(2.22)

Where∑
UserF1 is the sum over all users of each user’s individual F1.

Usuccessful is the number of successful users evaluated (excluding users for which no recommendations
could be made, but including users with Top-N lists containing no relevant items).

Average First Hit Position

AFHP =
∑

FHPU

Usuccessful
(2.23)

Where∑
FHPU is the sum over all users position of their first relevant item (users with no relevant items

returned have no first relevant item and are thus ignored).

Usuccessful is the number of successful users evaluated (excluding users for which no recommendations
could be made, but including users with Top-N lists containing no relevant items).
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2.6 Evaluation data

Evaluations will be made based on four datasets. Three rating datasets and one transaction dataset. Each
dataset is represent by a set of histograms showing some characteristics of the datasets. Comparison of
the histograms reveals common characteristics between the rating datasets, such as a normal distribution
of ratings etc.

2.6.1 Consistent MovieLens rating dataset (CML)

The 100.000 ratings MovieLens rating dataset was collected by the GroupLens Research Project at the
University of Minnesota. The dataset consists of user ratings on movies, ratings are on a 1-5 scale
(”half-star” ratings were later introduced into their experimental movie recommender system.)

The original rating dataset contained a few inconsistencies that was removed, in particular 20 pairs
of movies with different ”id” are really the same movies, meaning users have rated the same movie twice.
These inconsistencies were resolved by removing one of the movies and keeping each user’s higher rating
in the cases a user had rated both movies and differently. Four movies in the set that could not be
located in the IMDb were also removed as we needed to be able to retrieve attribute data for all movies.
This lead to a reduction of 24 items and 304 ratings, no users needed to be removed. The rating dataset
still consists of only users that have rated at least 20 movies (with the exception of one user that now
only has 19 ratings). All movies in the dataset we used contain IMDb ids, meaning we could use the
publicly available IMDb attribute datasets together with the rating dataset.

Statistics for the rating dataset are shown in [Table 2.3].

Users 943
Items 1658
Ratings 99696
Sparsity (of user-item matrix) 93%
Mean rating (for users) 3.53
Average number of ratings per user 105
Average number of ratings per item 60

Table 2.3: Statistics for the CML rating dataset.

Sparsity is quite high, however this is to be expected for any dataset as users and items increase and
is part of the challenge of recommender systems based on rating data. The number of users and items
is relatively small, however the dataset is used in many papers and is thus still interesting to include. A
large MovieLens rating dataset consisting of 1 million ratings is also offered, however we chose to only
work with this smaller dataset. Naturally the hope is that results on this dataset give a good hint of
results on larger datasets, whether or not that is the case is hard to know.

If we look at a histogram showing how often the discrete ratings 1-5 are used we see that the spread
is roughly normal distributed [Figure 2.3].

74



Figure 2.3: Histogram showing the rating frequency in the CML dataset, i.e. how many times each
discrete grade 1-5 is assigned an item.

The average number of ratings per user is 105, if we look at a histogram showing how many users
have rated varying numbers of items we get a better idea of the rating spread [Figure 2.4].

Similarly we can look closer at the per item rating spread, which is relevant in item based recom-
mendation techniques that will use this rating data [Figure 2.5].

Figure 2.4: Histogram showing how many users have rated varying numbers of items in the CML dataset.
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Figure 2.5: Histogram showing how often items have been rated in the CML dataset.

Interesting to study is also how an average user relates to its neighbors. I.e. given any user in the
rating dataset, how many neighbors does the user have 100 items in common with [Figure 2.6], and how
many neighbors does the user have 100 items in common with that are rated the same [Figure 2.7].

Similarly it is interesting to study how an average item relates to its neighbors. I.e. given any item
in the rating dataset, how many neighbors does the item have 100 users in common with [Figure 2.8],
and how many neighbors does the item have 100 users in common with that have assigned the item and
the neighbor the same rating [Figure 2.9].

Figure 2.6: How an average user in the CML dataset relates to its neighbors in terms of common items.
I.e. how many neighbors does the user have exactly 40 items in common with?
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Figure 2.7: How an average user in the CML dataset relates to its neighbors in terms of common ratings.
I.e. how many neighbors does the user have exactly 10 items in common with that both the user and
the neighbor have rated the same.

Figure 2.8: How an average item in the CML dataset relates to its neighbors in terms of common users.
I.e. how many neighbors does the item have exactly 40 users in common with?
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Figure 2.9: How an average item in the CML dataset relates to its neighbors in terms of common ratings.
I.e. how many neighbors does the item have exactly 10 users in common with that have given the item
and its neighbor the same rating.

2.6.2 Discshop rating dataset (DS)

Dataset consists of ratings collected from a Swedish e-commerce site selling DVDs.
Dataset is a preprocessed version of a larger dataset. In particular the original dataset consisted of

user ratings on products instead of directly on movies. E.g. ratings were assigned per DVD edition of
a movie. When rating a DVD edition the customer was allowed to assign multiple grades, in particular
one grade to the DVD edition and one grade to the movie itself. A user may thus rate different DVD
editions of the same movie and in the process the user might give the same movie different ratings, this
may occur because user changed opinion about the movie or because DVD edition contain significantly
different cuts of the movie. The original rating dataset on products does not allow for discerning between
different cuts of the same movie, a movie is always the same movie independent of the cut. E.g. Blade
Runner and Blade Runner Directors Cut is both identified as the movie Blade Runner, though with
two different DVD editions. In order to create this rating dataset of movies, products were mapped to
movies by keeping the grade assigned to the movie and ignoring the grade assigned to the DVD edition.
In the cases a user had rated multiple DVD editions of the same movie, the highest grade assigned the
movie was kept. The reason for not working with the ratings of DVD editions was made in order to get
a simpler dataset to work with, a dataset that can easily be used together with attribute datasets for
movies.

It was considered practical to ignore users with less than 20 rated movies. Any recommendation
technique is considered unlikely to be able to produce reliable recommendations based on too little
information about users, in this case less than 20 ratings was considered too little information. By
ignoring users with few ratings the size of the rating dataset was also reduced to a more manageable
size. Statistics for the rating dataset are shown in [Table 2.4].

Users 2001
Items 6256
Ratings 129829
Sparsity (of user-item matrix) 98%
Mean rating (for users) 3.74
Average number of ratings per user 64
Average number of ratings per item 20

Table 2.4: Statistics for the DS rating dataset.
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If we look at a histogram showing the distribution of ratings, we see that it is very similar to the
distribution for the CML dataset [Figure 2.10].

Figure 2.10: Histogram showing the rating frequency in the DS dataset, i.e. how many times each
discrete grade 1-5 is assigned to an item.

The average number of ratings per user is 64 in the DS dataset, if we look at a histogram showing
how many users have rated varying numbers of items we get a better idea of the rating spread [Figure
2.11].

Similarly we can look closer at the per item rating spread, which is relevant in item based recom-
mendation techniques that will use this rating data [Figure 2.12].

Figure 2.11: Histogram showing how many users have rated varying numbers of items in the DS dataset.
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Figure 2.12: Histogram showing how often items have been rated in the DS dataset.

Interesting to study is also how an average user relates to its neighbors. I.e. given any user in the
rating dataset, how many neighbors does the user have 100 items in common with [Figure 2.13], and
how many neighbors does the user have 100 items in common with that are rated the same [Figure 2.14].
Similarly it is interesting to study how an average item relates to its neighbors. I.e. given any item in
the rating dataset, how many neighbors does the item have 100 users in common with [Figure 2.15], and
how many neighbors does the item have 100 users in common with that have assigned the item and the
neighbor the same rating [Figure 2.16].

Figure 2.13: How an average user in the DS dataset relates to its neighbors in terms of common items.
I.e. how many neighbors does the user have exactly 40 items in common with?
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Figure 2.14: How an average user in the DS dataset relates to its neighbors in terms of common ratings.
I.e. how many neighbors does the user have exactly 10 items in common with that both the user and
the neighbor have rated the same.

Figure 2.15: How an average item in the DS dataset relates to its neighbors in terms of common users.
I.e. how many neighbors does the item have exactly 40 users in common with?
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Figure 2.16: How an average item in the DS dataset relates to its neighbors in terms of common ratings.
I.e. how many neighbors does the item have exactly 10 users in common with that have given the item
and its neighbor the same rating.

2.6.3 Discshop rating dataset 2 (DS2)

Dataset is a subset of the DS dataset in which it has been required that in addition to each user having
to have rated at least 20 items, each item must also have been rated by 20 users. This avoids situations
in which a user has indeed rated 20 items, but that user is the only user that has rated those items. The
enforcement is for simplicity not strict, some items will be rated by less than 20 users, however most of
the items will have been rated by more than 20 users.

Statistics for the rating dataset are shown in [Table 2.5].

Users 2001
Items 1962
Ratings 110418
Sparsity (of user-item matrix) 97%
Mean rating (for users) 3.79
Average number of ratings per user 55
Average number of ratings per item 56

Table 2.5: Statistics for the DS2 rating dataset.

If we look at a histogram showing how often the discrete ratings 1-5 are used we see that the spread
is roughly normal distributed [Figure 2.17] and similar to the DS data’s rating spread.
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Figure 2.17: Histogram showing the rating frequency in the DS2 dataset, i.e. how many times each
discrete grade 1-5 is assigned an item.

The average number of ratings per user is 55, if we look at a histogram showing how many users have
rated varying numbers of items we get a better idea of the rating spread [Figure 2.19].

Similarly we can look closer at the per item rating spread, which is relevant in item based recom-
mendation techniques that will use this rating data [Figure 2.18].

Figure 2.18: Histogram showing how many users have rated varying numbers of items in the DS2 dataset.
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Figure 2.19: Histogram showing how often items have been rated in the DS2 dataset.

Interesting to study is also how an average user relates to its neighbors. I.e. given any user in the
rating dataset, how many neighbors does the user have 100 items in common with [Figure 2.20], and
how many neighbors does the user have 100 items in common with that are rated the same [Figure 2.21].
Similarly it is interesting to study how an average item relates to its neighbors. I.e. given any item in
the rating dataset, how many neighbors does the item have 100 users in common with [Figure 2.22], and
how many neighbors does the item have 100 users in common with that have assigned the item and the
neighbor the same rating [Figure 2.23].

Figure 2.20: How an average user in the DS2 dataset relates to its neighbors in terms of common items.
I.e. how many neighbors does the user have exactly 40 items in common with?
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Figure 2.21: How an average user in the DS2 dataset relates to its neighbors in terms of common ratings.
I.e. how many neighbors does the user have exactly 10 items in common with that both the user and
the neighbor have rated the same.

Figure 2.22: How an average item in the DS2 dataset relates to its neighbors in terms of common users.
I.e. how many neighbors does the item have exactly 40 users in common with?
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Figure 2.23: How an average item in the DS2 dataset relates to its neighbors in terms of common ratings.
I.e. how many neighbors does the item have exactly 10 users in common with that have given the item
and its neighbor the same rating.

2.6.4 Discshop transaction dataset (DS-T)

In addition to the rating dataset we also obtain a transaction dataset. Dataset consists of user (customer)
transactions. A transaction in this case is defined as a purchase by a user of a single item (movie). Dataset
does not aid in market basket analysis as a users complete purchase history has been aggregated. All
users in the dataset have purchased at least 20 movies.

Statistics for the transaction dataset are shown in [Table 2.6].

Users 3158
Items 6380
Transactions 145637
Sparsity (of user-item matrix) 99%
Average number of transactions per user 46
Average number of transactions per item 22

Table 2.6: Statistics for the DS-T transaction dataset.

Histograms showing the per user and item purchase distribution are shown in [Figure 37,Figure 38],
as well as an average user and average items relation to its neighbors in [Figure 39,Figure 40].
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Figure 2.24: Histogram showing the distribution of the size of user transactions in the DS-T dataset.

Figure 2.25: Histogram showing the distribution of the size of item transactions in the DS-T dataset.
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Figure 2.26: How an average user in the DS-T dataset relates to its neighbors in terms of common
transactions. I.e. how many neighbors does the user have exactly 40 purchased items in common with?

Figure 2.27: How an average item in the DS-T dataset relates to its neighbors in terms of common
transactions. I.e. how many neighbors does the item have exactly 40 users (i.e. users that have purchased
both the item and the neighbor) in common with?

2.6.5 Discshop attribute dataset (DS-A)

In addition to the movie rating- and movie transaction- data we also obtain the information displayed for
the movies the customers could purchase, we prepare this per movie attribute information into separate
datasets consisting of one type of attribute each. The attribute types we will work with are:

1. Actor

2. Age limit

3. Country

4. Director
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5. Genre

6. Title

7. Alternative title

8. Original title

9. Writer

10. Year

2.6.6 IMDb attribute dataset (IMDB)

The movie attribute dataset are obtain from The Internet Movie Database (IMDb). The original attribute
datasets use the movie’s original title as key, movies with the same title have a identifier specifying the
duplication number appended. However, for our purposes it turns out to be more practical to work with
IMDb Constant Title Codes (”IMDb-ids”), especially as the CML dataset has been converted to use
IMDb-ids. Thus we prepared IMDb attribute datasets that use IMDb-ids instead of the unique IMDb
movie titles.

We prepared datasets consisting of one attribute type each, the attribute types we will work with
are:

1. Actors

2. Actresses

3. Cinematographers

4. Color info

5. Composers

6. Costume designers

7. Countries

8. Directors

9. Distributors

10. Editors

11. Genres

12. Keywords

13. Language

14. Locations

15. Miscellaneous companies

16. Miscellaneous

17. Producers

18. Production companies

19. Production designers

20. Sound-mix

21. Special effects companies

22. Technical

23. Title

24. Writers
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2.7 Evaluation results

The recommendation techniques were evaluated for the evaluation datasets using various combinations
of evaluation protocol, training/test data formation and evaluation metrics.

For the recommendation techniques we select where necessary an appropriate combination of simi-
larity and prediction algorithm, we use a decent set of settings giving good results, not necessarily the
absolute best results, but near enough to be interesting to list.

We will describe briefly for each recommendation technique the setup of the evaluation, such that
the evaluation can easily be understood and reproduced.

2.7.1 Accuracy of predictions

The result tables use the following abbreviations for the column headings: ET = Total evaluation time,
Us = Usuccessful, Uf = Ufailed, Ps = Psuccessful, Pf = Pfailed, Cov = Coverage, Corr = Correctness, P
= Precision.

The settings column names the recommendation algorithm instance used of the recommendation
technique in question. Typically only the name of the dataset used for evaluation is given (i.e. DS, DS2
or CML). Each table of evaluation results is followed by a description of algorithms and settings used
for each recommendation technique.

In all cases a 10-fold evaluation as previously described was performed. Note that the same 10-folded
evaluation data of each dataset were used for each evaluation.

BASELINESF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS-UM 0 2001 0 12982 0 100.0% 39.7% 0.780 0.745 0.804 0.771 0.195 1.001 1.001

DS-IM 0 2000 0 12861 121 99.1% 41.8% 0.760 0.720 0.778 0.739 0.190 0.965 0.983

DS-
PDFM

0 2000 0 12861 121 99.1% 46.0% 0.687 0.649 0.700 0.665 0.172 0.820 0.906

DS-R 0 2001 0 12982 0 100.0% 21.1% 1.428 1.429 1.482 1.483 0.357 3.047 1.746

DS2-UM 0 1991 0 11035 0 100.0% 40.3% 0.766 0.730 0.792 0.760 0.192 0.968 0.984

DS2-IM 0 1991 0 11035 0 100.0% 42.9% 0.736 0.694 0.764 0.723 0.184 0.898 0.948

DS2-
PDFM

0 1991 0 11035 0 100.0% 47.2% 0.667 0.627 0.688 0.651 0.167 0.772 0.879

DS2-R 0 1991 0 11035 0 100.0% 21.1% 1.435 1.435 1.488 1.487 0.359 3.078 1.754

CML-UM 0 943 0 9967 0 100.0% 36.2% 0.834 0.802 0.842 0.809 0.209 1.084 1.041

CML-IM 0 943 0 9952 15 99.8% 36.9% 0.815 0.783 0.833 0.801 0.204 1.043 1.021

CML-
PDFM

0 943 0 9952 15 99.8% 40.8% 0.754 0.718 0.776 0.742 0.189 0.916 0.957

CML-R 0 943 0 9967 0 100.0% 21.7% 1.386 1.385 1.400 1.399 0.346 2.875 1.695

Table 2.7: Evaluation results for the BASELINESF technique. The abbreviations UM, IM, PDFM and
R refer to using respectively the User Mean, Item Mean, Population Deviation From Mean and Random
prediction algorithms. Thus DS-UM means the Discshop dataset was used and the User Mean prediction
algorithm.

As a statistical prediction algorithm the PDFM algorithm seems to be the one that gives the lowest
MAE for both datasets. Note that neither of the algorithms are truly CF algorithms, though they rely
on the same rating datasets as the CF algorithms we will later try and thus serves as a decent statistical
baseline to compare CF algorithms performance against. The results of the random prediction algorithm
can be seen to serve as a comparison against any prediction algorithm, as the aim is at least to be better
than a random prediction algorithm in any circumstance.
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UCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 3 1990 10 12729 253 98.0% 47.2% 0.679 0.640 0.701 0.664 0.170 0.820 0.906

DS2 2 1978 12 11002 33 99.7% 48.2% 0.657 0.618 0.687 0.652 0.164 0.768 0.876

CML 1 943 0 9952 15 99.8% 42.7% 0.729 0.692 0.753 0.718 0.182 0.874 0.935

Table 2.8: Evaluation results for the UCF technique. In all instances the Pearson similarity algorithm
(with OT=2, ST=30) and the Weighted Deviation From Mean prediction algorithm (with NSmin=1,
NSmax=30) was used. No minimum or maximum similarity restrictions were imposed.

Since the UCF technique sorts neighbors in descending order of similarity (highest first) it means that the
30 most similar neighbors to the active user were used as recommenders. We can note that the technique
in this case performs better for both datasets than the best performing instance of the baseline technique
in terms of MAE.

RNUCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 4 2000 0 12861 121 99.1% 45.8% 0.692 0.653 0.704 0.668 0.173 0.829 0.911

DS2 1 1991 0 11035 0 100.0% 46.7% 0.672 0.633 0.692 0.656 0.168 0.783 0.885

CML 1 943 0 9952 15 99.8% 40.5% 0.762 0.726 0.784 0.749 0.190 0.934 0.967

Table 2.9: Evaluation results for the RNUCF technique. Same settings as for the UCF technique were
used.

Exactly the same settings and algorithms as in the UCF Technique evaluation were used. However since
the RNUCF technique unlike the UCF technique (to which it otherwise is identical) sorts neighbors
randomly it means that between 1 and 30 randomly chosen neighbors will be used as recommenders.
Note that only neighbors with which a similarity could be calculated will be considered. So this truly
is a random neighbors version of the UCF technique. We can note that the technique in this case only
performs marginally worse than the UCF technique for both datasets in terms of MAE. Can this be a
consequence of most similarities being observed to be very low, and as such any similarity will do as
good as any other?

TRUSTUCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 16 1969 31 10888 2094 83.9% 47.4% 0.676 0.639 0.700 0.666 0.169 0.820 0.906

DS2 11 1963 27 10288 747 93.2% 47.9% 0.664 0.627 0.693 0.659 0.166 0.793 0.890

CML 6 942 0 9583 384 96.1% 42.9% 0.733 0.695 0.759 0.723 0.183 0.892 0.944

Table 2.10: Evaluation results for the TRUSTUCF technique. Same settings as for the UCF technique
were used.

Again the same settings and algorithms as in the UCF Technique evaluation were used. However the
similarity between the active user and the active user’s neighbors is weighted depending on how much
the neighbors are trusted to be able to predict for the active item. We can note that the technique in this
case performs basically equally well as the UCF technique for both datasets in terms of MAE. Coverage
is however lower than for the UCF technique.
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CIPUCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 5 1990 10 12729 253 98.0% 46.7% 0.684 0.645 0.711 0.674 0.171 0.826 0.909

DS2 3 1978 12 11002 33 99.7% 47.7% 0.663 0.624 0.697 0.662 0.166 0.774 0.880

CML 1 943 0 9952 15 99.8% 42.7% 0.733 0.696 0.758 0.724 0.183 0.887 0.942

Table 2.11: Evaluation results for the CIPUCF technique. Same settings as for the UCF technique were
used.

Again the same settings and algorithms as in the UCF Technique evaluation were used. However neigh-
bors with most items common with the active user were prioritized in hopes of those similarities being
most reliable. We can note that the technique in this case only performs marginally worse than the UCF
technique for both datasets in terms of MAE.

ICF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 10 1998 2 12591 391 97.0% 43.9% 0.727 0.690 0.776 0.745 0.182 0.917 0.958

DS2 2 1990 0 11033 2 100.0% 44.6% 0.707 0.669 0.764 0.731 0.177 0.861 0.92

CML 1 943 0 9936 30 99.7% 41.7% 0.744 0.708 0.786 0.751 0.186 0.902 0.950

Table 2.12: Evaluation results for the ICF technique. In all instances the Adjusted Cosine similarity algo-
rithm (with OT=2, ST=30) and the Average Rating prediction algorithm (with NSmin=1, NSmax=30)
was used. No minimum or maximum similarity restrictions were imposed. In all cases a complete item
model was created (MS=0), only the neighborhood size restricted the number of items involved in
predictions (a variation, perhaps, of the more common approach).

Since the ICF technique sorts item neighbors (items similar to the active item) in descending order of
similarity (highest first) it means that the 30 most similar items that the active user had rated were used
as a basis for the predictions. We can note that the technique in this case for all datasets performs worse
than or equal to the best performing instance of the baseline technique in terms of MAE.

RNICF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 11 1999 1 12858 124 99.0% 40.0% 0.786 0.750 0.807 0.773 0.196 1.031 1.015

DS2 1 1991 0 11035 0 100.0% 40.2% 0.772 0.735 0.795 0.763 0.193 0.984 0.992

CML 0 943 0 9952 15 99.8% 36.0% 0.843 0.811 0.847 0.815 0.211 1.109 1.053

Table 2.13: Evaluation results for the RNICF technique. Same settings as for the ICF technique were
used.

Exactly the same settings and algorithms as in the ICF Technique evaluation were used. However since
the RNICF technique unlike the ICF technique (to which it otherwise is identical) sorts item neighbors
randomly it means that between 1 and 30 randomly chosen item will be used as neighbors for the active
item and make the basis for the predictions. Note that only neighbors with which a similarity could be
calculated will be considered. So this truly is a random neighbors version of the ICF technique. We
can note that the technique in this case only performs somewhat worse than the ICF technique for both
datasets in terms of MAE. The evaluation based on the CML dataset seems to do a bit more than worse
though compared to the ICF technique.
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PCBF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 42 2001 0 12975 7 99.9% 41.3% 0.758 0.722 0.788 0.755 0.190 0.958 0.979

DS2 22 1990 0 11029 6 99.9% 41.9% 0.746 0.709 0.777 0.741 0.186 0.930 0.965

CML 7 943 0 9935 32 99.7% 38.3% 0.790 0.756 0.809 0.777 0.197 0.982 0.99

Table 2.14: Evaluation results for the PCBF technique. For the DS dataset six different attribute types
were involved in calculating item similarities. For the CML dataset 21 different attribute types were
involved in calculating the item similarities. To calculate per attribute similarities the Attribute Cosine
similarity algorithm (with OT=1, ST=30) and the Common Attributes similarity algorithm (with OT=1,
ST=30). No minimum similarity restrictions were imposed. Predictions were made in all instances using
the Weight Sum prediction algorithm (with NSmin=1, NSmax=30). In all cases a complete item model
was created (MS=0), only the neighborhood size restricted the number of items involved in predictions.

For the DS dataset six different attribute types from the DS-A dataset were used: Actor, Age limit,
Country, Director, Writer and Genre. The Common Attributes similarity algorithm were used for the
Actor, Age limit, Country and Writer attribute types. The Attribute Cosine similarity algorithm were
used for the Director and Genre attribute types. For both similarity algorithms (in all cases) at least one
common attribute was required and a significance threshold of 30 was used (which might not be a good
choice seeing how movies only for the actor attribute type is likely to have more than 30 attributes).
Similarities were weighted based on which attribute they were based on as follows; Actor 10, Age limit
1, Country 3, Director 9, Genre 8 and Writer 9 (e.g. the Actor similarity makes up 10/(1 + 3 + 9 +
8 + 9) of the total similarity). That is, actors, director, genre and write were most influential while age
limit and country influence the final similarity very little. For the CML dataset all available attribute
types except title in the IMDB dataset were used, again the Common Attributes and Attribute Cosine
similarity algorithms were used with the same settings as for the DS dataset. Varying weights were
used for the different attributes, highest influence was placed on similarities based on the Actor, Actress,
Director, Writer and Genre attribute types. The Weighted Sum prediction algorithm was used to generate
predictions, basing its predictions on a neighborhood consisting of at least 1 neighbor and at most 30
neighbors. Complete item similarly models were generated, i.e. for each item its similarities with all
other items were precalculated and available for consideration by the prediction algorithm.

We can note that the technique in this case only performs somewhat worse than the ICF technique
for both datasets in terms of MAE, it performs marginally better than the RNICF technique however.

2.7.2 Relevance of Top-N ranking lists

The result tables use the following abbreviations for the column headings: ET = Total evaluation time,
Us = Usuccessful, Uf = Ufailed, TNs = TNsuccessful, TNf = TNfailed, Cov=Coverage, R=Recall,
P=Precision, U=Utility, RAU = RecallAU , PAU = PrecisionAU , UAU = UtilityAU .

In all cases, unless otherwise noted, a 10-fold evaluation was performed. Note that the same 10-folded
datasets were used for each evaluation.

In all cases a top N=10 list was generated for each user. When measuring the utility the half life
constant a was set to 5 in all cases.
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TOPNUCF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

CML 47 943 0 310 632 10 32.9% 4.6% 4.8% 0.047 0.042 4 4.5% 4.8% 0.039 0.038

DS (4
Fold
w/ 75%
Test)

8 495 1505 421 1579 6 21.1% 2.6% 40.8% 0.049 0.078 1 3.1% 41.5% 0.057 0.078

DS2 (4
Fold
w/ 75%
Test)

33 1968 29 572 1426 9 28.6% 2.7% 3.7% 0.031 0.031 4 3.2% 3.8% 0.031 0.030

CML
(4 Fold
w/ 75%
Test)

3 761 181 688 254 9 73.0% 3.6% 36.3% 0.065 0.063 2 4.5% 36.6% 0.075 0.063

Table 2.15: Evaluation results for the TOPNUCF technique. In all instances the Pearson similarity
algorithm (with OT = 2, ST = 30) and the Weighted Deviation From Mean prediction algorithm (with
NSmin = 10, NSmax = 20) was used. Only the CML dataset was evaluated using a 10-folded evaluation
dataset, instead a 4-fold evaluation dataset with 75% test data (note, this is as opposed to a 25% test
data) was used to evaluate using many known relevant items.

TOPNICF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS 15 1272 728 344 1656 8 17.2% 4.2% 4.1% 0.041 0.036 4 4.9% 4.2% 0.039 0.036

DS2 5 1271 719 356 1635 8 17.9% 5.0% 4.2% 0.046 0.039 4 5.5% 4.4% 0.043 0.039

CML 6 856 86 392 550 9 41.6% 6.1% 7.1% 0.066 0.053 4 8.0% 7.2% 0.064 0.055

DS (All-
But1)

16 1432 568 60 1940 8 3.0% 4.2% 0.5% 0.008 0.024 4 4.2% 0.6% 0.010 0.024

DS2 (All-
But1)

6 1427 563 68 1922 8 3.4% 4.8% 0.5% 0.010 0.027 4 4.8% 0.7% 0.011 0.027

CML
(AllBut1)

7 888 54 72 870 9 7.7% 8.2% 0.8% 0.015 0.044 4 8.2% 0.9% 0.015 0.044

Table 2.16: Evaluation results for the TOPNICF technique. In all instances the Adjusted Cosine similar-
ity algorithm (with OT = 20, ST = 0) and the Weighted Sum prediction algorithm (with NSmin = 20,
NSmax = 50) was used. In all cases a complete item model was created (MS = 0), only the neighborhood
size restricted the number of items involved in predictions.

TOPNPCBF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS 111 2001 0 32 1968 10 1.6% 0.3% 0.2% 0.002 0.003 3 0.3% 0.2% 0.002 0.003

DS2 109 1991 0 28 1962 10 1.4% 0.3% 0.1% 0.002 0.003 4 0.3% 0.1% 0.002 0.003

CML
(AllBut1)

59 943 0 172 770 10 18.3% 2.2% 2.3% 0.022 0.025 4 2.2% 2.3% 0.019 0.022

Table 2.17: Evaluation results for the TOPNPCBF technique. Same settings as for the PCBF technique
were used, except that now a item model size of 30 (MS = 30) was used.
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TOPNCBF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS 49 3158 0 32 3125 10 1.0% 0.2% 0.1% 0.001 0.002 4 0.3% 0.1% 0.001 0.00

Table 2.18: Evaluation results for the TOPNCBF technique. Same settings as for the PCBF technique
were used, except that now a item model size of 100 (MS = 100) was used.

TBTOPNUCF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS 5 3158 0 1111 2047 10 35.2% 9.9% 4.6% 0.062 0.068 3 11.1% 4.6% 0.061 0.070

DS (All-
But1)

5 3158 0 372 2785 10 11.8% 11.8% 1.2% 0.021 0.077 3 11.8% 1.2% 0.021 0.077

Table 2.19: Evaluation results for the TBTOPNUCF technique. In all instances the Transaction Cosine
similarity algorithm (with OT = 2, ST = 0) and a neighborhood size of 30 (NS = 30) was used.

TBTOPNICF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS 10 3158 0 464 2693 10 14.7% 3.6% 1.7% 0.023 0.023 5 3.8% 1.7% 0.022 0.022

DS (All-
But1)

11 3158 0 146 3011 10 4.6% 4.6% 0.5% 0.008 0.023 5 4.6% 0.5% 0.008 0.023

Table 2.20: Evaluation results for the TBTOPNICF technique. For the DS setting the Transaction Cosine
similarity algorithm (with OT=2, ST=10) was used, and for the DS (AllBut1) setting the Transaction
Cosine similarity algorithm (with OT = 2, ST = 0) was used. In all cases a model size of 30 (MS = 30)
was used.

2.8 Summary and conclusions

The results of the evaluations are summarized in terms of MAE and Coverage for the prediction evalu-
ations [Figures 2.28(a), 2.28(b)], and in terms of Relevance and Precision for the relevance evaluation of
Top-N ranking lists [Figures 2.29(a), 2.29(b)].

The following notable observations can be made on the evaluation results of the prediction accuracy.

1. Evaluation time Evaluations based on the DS dataset take the longest time in all cases. CML
fastest.

2. Successful users and failed users In all cases the techniques were able to provide (almost) each
user with at least one prediction. For the CML dataset Us is max all the time, for the DS and
DS2 dataset there’s three notable cases where users fail to get any predictions, these are UCF,
TRUSTUCF and CIPUCF, with trust being the most notable one with about 30 users.

3. Successful predictions and failed predictions Many failed predictions for TRUSTUCF, considerably
worst for DS dataset. For all other techniques number of failed predictions is negligible. In those
cases you can note something, it is for the DS dataset.

4. Coverage Near 100% coverage in all cases except for the TRUSTUCF technique for which it is
considerably lower than for the rest. Otherwise in the cases we can note anything, it is for the DS
dataset the coverage is slightly lower.

5. Correctness Never more than 50% correctness for any technique. For baseline random has worst
correctness, and PDFM highest correctness in all cases. For all other techniques, the same pattern
appears, with DS2 slightly better than DS and CML.
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(a) MAE for evaluations of prediction accuracy.

(b) Coverage for evaluations of prediction accuracy.

Figure 2.28: Prediction accuracy in terms of MAE and Coverage for a select set of evaluated recommen-
dation algorithms. Note that MAE can at most be |Rmax −Rmin| (in this case 4), and that Coverage is
meassured in percent (%).
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(a) Recall for evaluations of relevance of Top-N ranking lists.

(b) Precision for evaluations of relevance of Top-N ranking lists.

Figure 2.29: Ranking relevance in terms of Recall and Precision for all evaluated recommendation algo-
rithms. Note that Recall and Precision is measured in percentage (%).
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6. Accuracy metrics Notable for the baseline techniques, random has clearly worst MAE, almost twice
the MAE of PDFM. We can note that the RNUCF and RNICF have twice as good MAE as the
random baseline. If we try out different methods of forming neighborhoods, clearly we should want
to outperform the RNUCF and RNICF techniques, and not just the baseline random predictions.
For all techniques independent of dataset, we get a MAE of approximately 0.7 + −0.05. For all
remaining measurements of prediction accuracy (NMAE, MSE, etc.) the same pattern can be
detected as for MAE. Meaning the accuracy is always best for the DS2 dataset, followed by DS
and CML.

As we can see the choice of dataset has impact on the results, MAE varies (not much, but little)
between the datasets, as does the coverage, therefore comparison of algorithm accuracy must be done on
exactly the same datasets. All techniques, except the random ones, have more or less the same accuracy.
Notable is that the baseline user mean and item mean which does not require much computing time
nor memory are not far off from the best performing techniques. But using those techniques, you can
not claim to produce personalized predictions. For example, the theoretically quite sound TRUSTUCF
technique gives us more reason to state our predictions are personalized, but reduces coverage consider-
ably and increases computation time. The reduction in coverage we believe has to do with the sparsity
of the data, the CML dataset is least sparse, the coverage when using i.e. the TRUSTUCF technique
is less noticeable (only shows a decrease in coverage of 5%) than for the DS and DS2 dataset. Choice
of metric based on our evaluations does not matter much since the same characteristics can be seen
independent of the metric. Therefore we agree with [Herlocker, 2000] who argues that a standardized
metric for evaluation of accuracy of predictions should be the MAE.

In many papers an increase in the second or third decimal of the MAE seems to be reason for claims
for a significant improvement in predictive accuracy of a recommender system. Sometimes statistical
tests are used to ensure that this really is a significant improvement. However, such tests do not mean
that any one user of the system will notice a difference, and only has a meaning when comparing against
other evaluation results and your own algorithms (e.g. will a user care whether he is predicted 4 or 4.5?).

The following notable observations can be made on the evaluation results of the ranking list relevance:

1. Successful and failed Users Number of failed users is heavily dependent on the size of the test data,
as is to be expected and can be seen when studying e.g. the evaluation results for the TOPNUCF
technique for the CML dataset when using a 10-Fold and 4-Fold (with 75% test data) evaluation
data set. Since we had the requirement that we wouldn’t make any predictions unless the active
user had seen at least 20 of the movies similar to the active movie, the number of failed users for the
TOPNICF technique was higher for the DS and DS2 dataset than for the CML dataset since the
average number of ratings per user is twice as high in the CML dataset. This requirement however
increases the confidence of the recommendations, and was deemed a necessary requirement to get
any useable results when using the TOPNICF technique. For all other techniques where applicable
no such minimum restriction is put on the neighborhood sizes, and the number of failed predictions
also goes down for those techniques.

2. Successful and failed Top-N lists For all techniques the number of failed Top-N lists is very high.
For the CML dataset the best results are obtained, with around ”only” half of the Top-N lists
containing no relevant items. Notable is that almost none of the Top-N lists produced by the
TOPNCBF technique contain any relevant items.

3. Average size of Top-N ranking list Same observations as for ”Successful and failed Users”.

4. Coverage Since, as observed, there are few successful Top-N lists the coverage should be low.

5. Recall and precision The effect of the size of the test data when it comes to recall and precision
is clearly visible when studying e.g. the evaluation results for the TOPNUCF technique for the
CML dataset when using 10-Fold and 4-Fold (with 75% test data) evaluation data sets. We see
that with a small test data set with few known relevant movies, recall increases but at the same
time precision decreases, as is to be expected. We also see the effect of having more known relevant
movies, recall is decreased but precision is increased. Since as previously observed few Top-N lists
containing any relevant items are returned, the recall should be low, similarly for precision. If we
look at the recall for the TOPNUCF technique for the DS and DS2 dataset we see that the recall
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is almost the same, but precision is 40.8% for the DS dataset and only 3.7% for the DS2 dataset.
The change of dataset clearly resulted in a decreased precision. If we look at the number of Top-N
lists we see that for the DS dataset there’s many failed Top-N lists, i.e. lists with no relevant items,
however the majority of these failed Top-N lists are also empty, this is not the case for the DS2
dataset where almost all failed Top-N lists are not empty. Since precision is the number of returned
relevant items divided by the total number of returned items, the empty Top-N lists accounts for
the higher precision.

6. F1 and Utility An interesting observation is that even though F1 and Utility are two different
formulas, they produce almost identical results in all cases except when AllBut1 is used. Which is
due to the fact that the F1 metric is dependent on the size of the test data, while Utility isn’t.

7. AFHP Interesting to note is that in most cases the first known relevant item is on average encoun-
tered on the fourth place in the Top-N lists.

Overall, given our results for the ranking evaluation, none of the algorithms produce Top-N lists
containing especially many items that had been assumed relevant for the user. In related studies of Top-N
recommendations, such as [McLaughlin and Herlocker, 2004], [Sarwar et al., 2000a] and [Karypis, 2001],
reported precision (for similar datasets) is overall low and high recall is not reported together with high
precision.

The measuring of relevance for ranking lists proves quite difficult, recall and precision is awfully low
within the evaluation model applied. For the same recommendation algorithm, higher precision can be
achieved when manipulating the form of the evaluation data such that the test dataset is larger, however
this decreases recall. Instead the goal is to naturally to alter the algorithm to increase precision, without
decreasing recall.

It is not always clear how relevance is defined in different studies, as discussed previously different
definitions are possible and must be made clear. In our evaluations rated items were considered relevant
and all other items were considered non-relevant. This means that for each user there is a larger number
of non-relevant items which will bias the results towards low relevance.

In summary, when evaluating your recommendation algorithms, pay attention to additional accuracy
measures when evaluating the prediction accuracy, look at MAE, Coverage and Correctness as well. Also
give thought to low measurements, consider e.g. whether a low coverage such as 40% as opposed to a
near 100% coverage is really a bad measurement, if for example the MAE goes up with 100% coverage,
is it then not better to settle for 40% coverage with low MAE instead? As also suggested elsewhere
[Riedl and Dourish, 2005], the focus on evaluation of recommender systems, adjusting algorithms to lower
MAE and other measurable quantities, should not be the only focus. Focus should be made on creating
useable recommender systems with innovative, experimental and interesting ways of interacting and
understanding the recommender system. This does not mean only focusing on the interface, but a focus
on from the beginning selecting sensible or interesting approaches to recommendation systems where in
the end the recommendation trail is what’s presented to the user. As such no incorrect recommendations
can be made, eliminating the need for a algorithmic evaluation, only well motivated recommendations
will be made that either appeal or do not appeal to the user, but which are never strictly incorrect
predictive guesses.
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Part II

Self-Organization applied to Recom-
mender Systems

“Progress isn’t made by early risers.
It’s made by lazy men trying to find

easier ways to do something.”
– Robert Heinlein

This part consists of three chapters. The first two are theoretical, giving the necessary background for
chapter three, in which we use the knowledge from the previous chapters in our attempt to implement
and evaluate recommender systems based on the SOM paradigm.

The purpose of the first chapter is to give the reader a basic understanding in what artificial neural
networks are. Motivations behind the development of artifical neural networks are discussed, the basic
biological neuron and the artificial neuron are described, network architectures and learning processes
are outlined, and a brief historical summary of some of the main events in the field of artifical neural
networks is given.

The second chapter deals with self-organizing systems in which Kohonen’s SOM is the main topic.
Self-organization as a biological phenomena is discussed and the requirements for self-organization are
described. Then, after a short introduction to the SOM paradigm, the incremental SOM algorithm is
outlined in detail together with a presentation of how parameters for the algorithm should be selected,
how to measure the quality of the SOM visualization and clustering issues in the SOM context. Some
important properties regarding the final SOM is also presented and a discussion of the theoretical aspects
of the SOM is given. Presentations of related work in the area of using the SOM paradigm in recommender
systems are given at the end of the chapter.

Finally, in chapter three, we describes why we have chosen to use the SOM paradigm as a part of
a recommender system by referring back to Part I and the issues regarding recommender systems that
was presented there. We proceed by showing how we have implemented different recommender systems
based on the SOM paradigm. This is done with pseudo code and descriptive commentaries of the code.
The systems are then evaluated in the same manner as in Part I.
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Chapter 3

Artificial neural networks

Artificial neural network is a discipline that draws its inspiration from biological neural networks in
the human brain. Artifical neural networks resembles the brain in two respects: the network acquires
knowledge from its environment using a learning process (algorithm) and stores the learned information
in interneuron connection strengths called synaptic weights. At the cellular level, the human brain
consists primarily of nerve cells called neurons. Neurons are parallel working units connected to each
other in a network style. The human brain contains approximately 1011 neurons. Each of these neurons
is connected to around 103 to 104 other neurons, and therefore the human brain is estimated to have
1014 to 1015 connections. The neuron is the basic building block of the nervous system and most neurons
are to be found in the brain.

3.1 The brain

The brain can be seen as a highly complex, nonlinear, and parallel information-processing system. It has
the capability of organizing neurons so as to perform certain computations (e.g. pattern recognition,
perception, and motor control) many times faster than the fastest digital computer. The brain is almost
completely enveloped by the cerebral cortex. Although it is only about 2-3 mm thick, its surface area,
when spread out, is about 2000 cm2 (roughly three times this paper). Typically, neurons are five to six
orders of magnitude slower than silicon logic gates; events in a silicon chip happen in the nanosecond
(10−9 s) range, whereas neural events happen in the millisecond (10−3s) range. However, the brain makes
up for the relatively slow rate of operation of a neuron by letting its huge number of neurons operate in
parallel. The net result is that the brain is an enormously efficient structure [Haykin, 1994].

The long course of evolution has also given the human brain many other characteristics that are
desirable in an artifical neural network. Some of these include:

Robustness and fault tolerance Nerve cells can die without any significant loss of performance by
the brain.

Adaptivity and learning The brain is trained - not programmed - and adapts therefore easily to new
environments.

Fuzziness Information can be inconsistent and noisy.

Massive parallelism

At birth, the distinct areas of the brain are all at place and within each brain area are millions of
neurons that are connected to each other by synapses. These synapses and the pathways they form
make up the neural network in the brain. After birth, the brain development continues and consists of
wiring and rewiring the connections (synapses) between neurons. New synapses are created and old ones
disappears, all depending on what kind of experience the brain is exposed to. The most dramatically
development of the brain takes place in the first two years from birth but it continues well beyond that
stage. During this early stage of development, about one million synapses are formed per second.
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(a) Schematic view of a biological neuron. (b) The Synapse.

Figure 3.1: Within the brain the biological neurons are connected by way of synapses.

3.2 The biological neuron

Neurons can be of many types and shapes, but ultimately they function in a similar way and are connected
to each other in a rather complex network stylish way via strands of fibre called axons. A neurons axon
acts as a transmission line and are connected to another neuron via that neurons dendrites, which are
fibres that emanate from the cell body (soma) of the neuron. The junction that allows transmission
between the axons and the dendrites are the synapse. Synapses are elementary structural and functional
units that creates the signal connection between two or more neurons; sometimes meaning the connection
as whole. [Figure 3.1]1

The most common kind of synapse is a chemical synapse: when a neuron is stimulated, it transmit
that nerve pulse to another neuron through the axons and causes the release of neurotransmitters that
travel through the synapse to the other neuron. That is, a presynaptic process liberates a transmitter
substance that diffuses across the synaptic junction between neurons and then acts on a postsynaptic
process. Thus a synapse converts a presynaptic electrical signal into a chemical signal and then back
into a postsynaptic electrical signal. In traditional descriptions of neural organization, it is assumed that
a synapse is a simple connection that can impose excitation(positively) or inhibition(negatively) on the
receptive neuron.

A developing neuron is synonymous with a plastic or adaptive brain. Plasticity permits the developing
nervous system to adapt to its surrounding environment, i.e. the creation of new synaptic connections
between neurons and the modification of existing synapses. It is this type of adaptation that forms the
basis for learning. Since plasticity appears to be essential to the functioning of neurons as information
processing units in the human brain, the same goes for neural networks made up of artificial neurons.
A phrase that sometimes appears in the context of artifical neural networks is the stability-plasticity
dilemma, which refers to the dilemma of a system having to be adaptive enough to allow for learning of
new knowledge (plasticity) while not forgetting previous learned knowledge (stability).

3.3 The artificial neuron

Artificial neurons are information-processing units that are only approximations (usually very crude ones)
of the biological neuron [Figure 3.2]. Three basic elements of the artificial neuron can be identified[Haykin, 1994]:

• A set of synapses or connection links, each of which is characterized by a weight or strength of its
own. Specifically, a component xi at the input of synapse i connected to a neuron k is multiplied
by the synaptic weight wik. Note that the first subscript of the weight refers to the input end of
the synapse and the second to the neuron in question. The weight wik is positive if the associated
synapse is excitatory; it is negative if the synapse is inhibitory.

• An summation function for summing the input signals, weighted by the respective synapses of the
neuron and producing a linear output Sk. Sometimes referred to as a linear combiner.

1Figures are taken from the website http://vv.carleton.ca/~neil/neural/neuron-a.html
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Figure 3.2: Artificial neuron

• An activation function for limiting the amplitude of the output of a neuron. In general, activation
functions are monotonically increasing functions, where, (excluding the linear function) (f(−8) = 0
or f(8) = −1) and f(8) = 1, i.e. the output of a neuron can be written as the closed unit interval
[0, 1] or alternatively [−1, 1].

The model of a neuron also includes an fixed input x0 = 1 and a weight w0k = −θk called the
threshold. Mathematically, we can describe the artificial neuron as follows:

Sk =
n∑

i=1

wikxi − θk =
n∑

i=0

wikxi (3.1)

yk = f(Sk)

where x1, x2, . . . , xn are the input signals; w1k, w2k, . . . , wnk are the synaptic weights of neuron k; S is
the sum of the input signals and the threshold; f(Sk) is the activation function and yk is the output
signal of neuron k.

The computational process can be described as follows: an artificial neuron receives its inputs
x1, x2, . . . , xn from some external source (the real world), computes a weighted sum S (usually) of
the input signals (including the threshold) using the summation function. This sum S is then used as
input for the activation function f(S) that generates the final output y.

Different types of activation functions can be used and three of them are described in [Figure 3.3].
The most commonly used is nonlinear sigmoid activation functions such as the logistic function. A
logistic function assumes a continuous range of values form 0 and 1 in contrary to the discrete threshold
function. A binary threshold function was used in the first model of an artificial neuron back in 1943, the
so-called McCulloch-Pitts model. Threshold functions goes by many names, e.g. step-function, heavyside
function, hard-limiter etc. Common for all is that they produce one of two scalar output values (usually
1 and −1 or 0 and 1) depending on the value of the threshold. Another type of activation function is
the linear function or some times called the identity function since the activation is just the input. In
general if the task is to approximate some function then the output nodes are linear and if the task is
classification then sigmoidal output nodes are used.

Mathematically and graphically, we can describe the functions as in [Figure 3.3].
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(a) Linear function (b) Threshold function (c) Sigmoid function

Figure 3.3: (a) The linear function f(S) = αf(S) produces a linearly modulated output, where α is a
constant (if α is 1 it becomes the identy function). (b) The threshold function f(S) in this cases uses a
threshold of zero causing the output to be either 1 or -1, i.e. f(S) = 1 if S >= 0 and −1 if S < 0. (c) In
the sigmoid function f(S) = 1

1+eλS that is shown (the logistic function) λ controls the steepness of the
function, and is usually equal to -1.

A nice property of the sigmoid function is that its derivative [Equation 3.2] is easy to calculate, which
is an important feature in network theory.

δf(S)
δS

= f(S)(1− f(S)) (3.2)

If every aspect of a biological neuron was to be considered in a computer simulation, then one would
need more than all the computing resources that are available to theorist now days [Kohonen, 2001].
Therefore, artificial neurons and hence, artifical neural networks are only approximations to parts of the
real brain, and the extent to which a artifical neural network approximate a particular part of the brain
usually varies. This means, that if the goal is to understand the principles on which the human brain
works, then the biological plausibility of the artifical neural network is of primary concern, otherwise, the
artifical neural network models can been seen as practical inventions for new components and techniques
inspired by the brain.

3.4 Formal definition of artificial neural networks

From a practical point of view, an artifical neural network is a parallel computational systems, inspired
by the structure, processing methods and learning ability of the human brain, consisting of many simple
processing elements (artificial neurons) connected together in a specific way (network style) in order to
perform a particular task.

One of the most powerful features of artifical neural networks are their ability to learn and generalize
from a set of training data. Training data is used only for training the network to perform a certain
task. In order to test how good the network is on performing the particular task it has been trained for,
a special data set called test data is used that contains examples that was not included in the training
set. Learning means that the network adapt the strengths/weights of the connections between neurons
until enough knowledge about the training data is stored in the network so it can perform the task it
been trained for. Generalization means that the network after training can recognize inputs correctly
that was not part of the training dataset, hence the importantly of using test data that has not been
included in the training data. Note that knowledge is stored in the weights not in the neurons, i.e. the
final configuration of the weights represent the networks knowledge. Four basic rules when it comes to
knowledge representation in a neural network are given in [Haykin, 1994]:

1. Similar inputs from similar classes of input should usually produce similar representations inside
the network.

2. Data categorized as belonging to separate classes should give widely different representations in
the network.

3. If a particular feature is important, then there should be a large number of neurons involved in the
representation of that data in the network.
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4. Prior information and invariance’s should be built into the design of a neural network, thereby
simplifying the network design by not having to learn them.

From the above discussion, we can adapt Haykins definition of a neural network [Haykin, 1994]:

”A neural network is a massively parallel distributed processor that has a natural propensity
for storing experiential knowledge and making it available for use. It resembles the brain in
two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the knowl-
edge.”

The procedure used to perform the learning process is called a learning algorithm, the function of which
is to modify the synaptic weights of the network. The modification of synaptic weights provides the
traditional method for the design of neural networks, however, it is also possible for a neural network to
modify its own topology, which is motivated by the fact that neurons in the brain can die and that new
synaptic connections can grow.

3.5 Artifical neural network structures and learning algorithms

[Figure 3.4] provides a functional description of the various elements that constitute the model of an
artificial neuron. A more simpler way of representing the structure of an artificial neuron and particular
artificial neural networks is with the so-called so-called architectural graph [Figure 48] which describes
the layout of an artifical neural network. Haykin [Haykin, 1994] also represents neural networks in terms
of signal-flow graphs in which artificial neurons are nodes and directed links are connections between
nodes. In the terms of a signal-flow graph, the architectural graph is to be considered as a partially
complete signal-flow graph.

Two main structures of artifical neural networks, based on the arrangement of nodes and the connec-
tion patterns of the layers, are feedforward networks and recurrent networks. A layered neural network
is a network of neurons organized in the form of layers. In the simplest form it consists of one input
layer of source nodes and one output layer consisting of one or more neurons. However, multilayered
networks are by far the most common architecture of any neural network, in particular the popular mul-
tilayer perceptrons feedforward network. The difference is the presence of one or more hidden layers of
neurons. The function of the hidden neurons is to intervene between the external input and the network
output, typically, the neurons in each layer of the network have as their inputs the output signals of the
preceding layer only. By adding one or more hidden layers, the network is capable of modeling more
complex relationships between the input variables and the output variables.

3.5.1 Feedforward networks

The name ”feedforward” came from that neuron interconnections are acyclic, i.e. input nodes are con-
nected to output nodes, but not vice versa. [Figure 3.4] actually shows an Single-Layer Feedforward

Figure 3.4: The structure of a artificial neuron.
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(a) A (fully connected) multilayer
feedforward network

(b) A fully connected feedforward
2-dimensional lattice network

(c) A fully connected recurrent
network with three context nodes

Figure 3.5: Neural networks

network consisting of only one neuron in the output layer. Another class of feedforward networks are
multilayer Feedforward networks, as shown in [Figure 3.5(a)]. A feedforward network can be fully or
partially connected in the sense that every node in each layer is either connected or not connected to
every node in the adjacent forward layer. Another type of feedforward network is called a lattice network
in which the output neurons are arranged in rows and columns. Usually the lattice consists of one or
two-dimensional array (although higher dimensions are possible) of neurons with a corresponding set of
source nodes. Each source node is connected to every neuron in the lattice [Figure 3.5(b)]. The most
known example of this kind of network is Kohonen’s SOM.

3.5.2 Recurrent networks

Recurrent network has input nodes, hidden neurons, output neurons, just as feedforward networks, what
distinguish themselves from feedforward networks is that they have at least one feedback loop, i.e. when
a neurons output is fed back into the network as input. A special type of feedback loop are called
self-feedback loops, which refers to a situation in which the output of a neuron is fed back to its own
input. Another type of feedback loop introduces a new type of nodes called context nodes [Figure 3.5(c)].
These nodes receive connections from the hidden neurons or the output layers of the network and have
output connections that travel back to the hidden neurons. Context nodes are required when learning
patterns over time (i.e. when the past value of the network influences the present processing). Recurrent
networks can therefore be seen as an attempt of incorporate time and memory into a neural network Two
examples of recurrent networks that are simple extensions of feedforward networks are Jordan network
(feedback from output layer to input layer) and Elman network (feedback from hidden layer to input
layer). Also, a widely known recurrent network is the Hopfield network in which all the connections are
symmetric.

The structure of an artifical neural network is closely related with the learning algorithm used to
train the network, different network architectures require appropriate learning algorithms.

3.6 Learning Rules

A learning algorithm refers to a procedure in which learning rules are used for adjusting the weights,
which formally can be defined in the context of neural networks as follows [Haykin, 1994]:

”Learning is a process by which the free parameters (the weights) of a neural network are
adapted through a continuing process of stimulation by the environment in which the network
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is embedded. The type of learning is determined by the manner in which the parameter changes
take place. Which implies the following sequence of events:

1. The neural network is stimulated by an environment.

2. The neural network undergoes changes as a result of this stimulation.

3. The neural network responds in a new way to the environment, because of the changes
that have occurred in its internal structure.”

Mathematically, this can be describes as follows. Let wik(t) denote the value of the synaptic weight
wik at time t between two neurons i and k or a input node i and a neuron k. At time t an adjustment
∆wik(t) is applied to the synaptic weight wik(t), yielding the updated value:

wik(t + 1) = wik(t) + ∆wik(t) (3.3)

where wik(t) and wik(t+1) is the old and new values of the synaptic weight wik and ∆wik is the
adjustment applied to the old value of wik as a result of the stimulation from some environment.

The reason why time is involved in the equation is that the network gradually adapts the synaptic
strengths, so t can be regarded as the number of times the neuron has been updated, or how many
training examples that has been run trough.

There is no unique learning algorithm for the design of neural networks, different learning algorithms
has advantages of their own. In general, learning algorithms differ from each other in the way in which
the adjustment ∆wik to the synaptic weight wik is formulated.

Four basic types of learning rules are [Haykin, 1994]: error-correction learning, Hebbian learning,
competitive learning and Boltzmann learning. Error-correction learning is rooted in optimization theory
whereas Hebbian and competitive learning are inspired by neurological considerations. Boltzmann learn-
ing is different altogether in that it is based on ideas borrowed from thermodynamics and information
theory. A brief explanation of error correction learning, Hebbian learning and competitive learning will
be described below. Competitive learning will also be described in more detail in the next chapter on
SOMs.

3.6.1 Error-correction learning

Typically, the actual output yk(t) produced by some vector x(t) applied to the input of the network at
time t in which neuron k is embedded differs from the desired output dk(t). Let the difference between
the desired and actual output define an error signal ek(t) = dk(t)− yk(t).

The error signal ek(t) is then used to adjust the values of the synaptic weights so that the output
signal approaches the desired response dk(t) in a step-by-step manner.

The simplest form of error-correction rule is the perceptron convergence procedure, invented by Rosen-
blatt in the 50s and published 1960. This rule is nonlinear, adjusting the weights makes use of the
”quantize error” ek, defined to be the difference between the desired output dk and the output of the
quantiziser yk, e.g. a binary threshold activation function [Widrow and Lehr, 2003]. The weights are
updated using [Equation 3.3] with:

∆wik =

 0 if yk = dk

+xi if yk = 0 and dk = 1
−xi if yk = 1 and dk = 0

(3.4)

That is, if ek = 0, no adjusting of the weights takes place. Otherwise, updating the weights is done by
adding the input vector x to the weight vector w if the error is positive, or by subtracting the input
vector x from the weight vector w if the error is negative. The input xi is also multiplied with a positive
learning-rate parameter η. For stability, the learning rate should be decreased to zero as iterations
progress and this affects the plasticity.

Another type of error correction rule is based on the gradient descent method. The purpose of the
gradient descent method is to minimize a cost function based on the error signal ek(t), such that the
actual response of each output neuron in the network approaches the target response for that neuron.
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Once a cost function has been chosen, this becomes an optimization problem2 to which the theory of
optimization can be applied.

A criterion commonly used for the cost function is the instantaneous value of the mean-square-error
criterion

E(t) =
1
2

2∑
k

e2
k(t) (3.5)

where summation is over all neurons in the output layer.
The network is then optimized by minimizing the error function E(t) with respect to the synaptic

weights of the network. The weights are updated using [Equation 3.3] with:

∆wik(t) = η

(
− ∂E

∂wik

)
(3.6)

The learning-rate parameter η is a positive constant which determines the amount of correction. Thus,
∆wik is the adjustment (correction) made to weight wik(t) at time t.

The derivation of

∂E
∂wik

(3.7)

using the notation from [Figure 3.4], i.e. the derivative of the cost function E with respect to the weights
is calculated using the chain rule which gives us the following partial derivatives:

∂E
∂wik

=
∂E
∂yk
× ∂yk

∂Sk
× ∂Sk

∂wik
(3.8)

which are equal to:

∂E
∂yk

= 2× 1
2
× ek ×−1 = −ek (3.9)

∂yk

∂Sk
=

∂f(Sk)
∂Sk

= f ′(Sk)

∂Sk

∂wik
=

∂
∑n

i=0 wikxi

∂wik
= xi

Hence

∂E
∂wik

= −ek × f ′(S)× xi (3.10)

Which, in general form is:

∆wik(t) = η × ek(t)× f ′(Sk(t))× xi(t) (3.11)

where wik(t) is the i-th element of the weight vector wk(t) of the output neuron k and xi is the corre-
sponding i-th component of the input vector x(t). f ′(Sk(t)) is the derivative of the activation function.

The first ones to published such a rule was Windrow and Hoff, who in 1960 published the least mean
square algorithm or Windrow-Hoffs delta rule as it also is referred to. This rule is linear, adjusting the
weights makes use of the ”linear error” ek, defined to be the difference between the desired output dk

and the output of the linear combiner [Widrow and Lehr, 2003], hence yk = Sk, if we use the notation
from [Figure 3.4]. Which gives, e− k = dk−Sk, and since f(Sk) ≡ Sk, its derivative is equal to 1. Using
[Equation 3.11], we get that:

∆wik(t) = η × ek(t)× xi(t) (3.12)

2In optimization theory, the object of a computational problem is to find the best possible solutions among all feasible
solutions which has the minimum (or maximum) value of an objective function. Objective functions can be thought of
as cost functions which determines how good a solution is, for instance, the total cost of edges in the travelling salesman
problem [Sant, 2005]
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(a) The error surface in the linear case for one weight. The
gradient of E in weight space are calculated and the weight
are moved along the negative gradient.

(b) The error surface in the nonlinear case for one weight.
The gradient of E in weight space are calculated and the
weight are moved along the negative gradient.

Figure 3.6: Error surfaces

The weights are then updated using [Equation 3.3].
This learning rule is also local since it uses information directly available to neuron k through its

synaptic connections. The learning rate parameter η is crucial to the performance of error-correction
learning in practice as it determines stability, convergence speed and the final accuracy.

A generalization of this rule is called the generalized delta learning rule and assumes continuous
activation functions which are at least once differentiable, hence the popular choice of the logistic function
as the activation function, since it is both continuous and has an easy calculated derivative. We will not
go in to detail here, but this generalization makes it possible to train multilayer networks with sigmoidian
activation functions in the hidden layer. The rule is nonlinear and adjusting the weights makes use of
the ”sigmoidian error” ek, defined to be the difference between the desired output dk and the output of
the sigmoidian yk (e.g. the logistic function).

The most popular learning algorithm that implements this is the backpropagation algorithm. This
algorithm consists of two phases:

1. Feedforward pass, in which the output error is calculated.

2. Backward propagation, in which the error signal is propagated back from the output layer toward
the input layer and on its way to the input layer, the weights are adjusted as functions of the
backpropagated error, hence the name of the algorithm.

The principle is the same as for the delta rule, we are only applying it to more nodes in several layers
and making the chain in the chain rule a bit longer.

To illustrate the gradient decent method, we can plot the error function against the weights. This
plot illustrates a multi-dimensional weight space, usually called the error-surface. In the linear case, e.g.
the least mean square algorithm, the error function becomes quadratic in its parameters and a global
minimum solution can easily be found. A plot for the error surface for one weight in the linear case is
shown in [Figure 3.6(a)].

However, in most cases the output of an artifical neural network is a nonlinear function of its param-
eters because of the choice of the activation function, e.g. the sigmoid functions, which is the case in the
general delta rule. As a result, it is no longer straightforward to derive at a solution for the weights that
is guaranteed to be globally optimal. In the case of the back-propagation algorithm, one way to avoid
this is to add a momentum term into the equation. This is easier pictured if we think of the solution as
a ball on the error surface, bouncing back and fourth, and whenever it got trapped in a local minimum
on the error surface, that extra momentum term will enforce that ball to bounce out of that minima and
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keep it bouncing until it got trapped in a global minima. At least, that’s the idea. A plot of a nonlinear
error surface is shown in [Figure 3.6(b)] for one weight.

In the case of SOMs, discussed in detail in the next chapter, it has been proven that it is impossible
to associate a global decreasing cost function to the SOM in the general case [Erwin et al., 1992].

3.6.2 Hebbian Learning

Within the field of artificial neural networks, Hebbian learning is an unsupervised training algorithm in
which the synaptic weight wik (strength) from neuron i to neuron k is increased if both neuron i and
neuron k are active at the same time. A natural extension of this is to decrease the synaptic strength
when the source neuron i and output neuron k are not active at the same time. Hence, the adjustment
applied at time t to the synaptic weight wik with presynaptic and postsynaptic activities denoted by xi

and yk can be expressed in mathematical terms as:

∆wik(t) = F (yk (t) , xi (t)) (3.13)

where F is a function of both the postsynaptic and presynaptic activities.
As a special case we may use the activity product rule:

∆wik(t) = ηyk(t)xi(t) (3.14)

where η is the learning rate parameter.
Hence, Hebbian learning can then be expressed as:

wik(t + 1) = wik(t) + ηyk(t)xi(t) (3.15)

Of course, from this representation we see that the repeated application of the input signal xi leads to an
exponential growth that finally drives the synaptic weight wik into saturation. One way to avoid this is
to impose some sort of limit on the growth of synaptic weights. One method for doing this is to introduce
a forgetting factor into the formula as follows:

∆wik(t) = ηyk(t)xi(t)− αyk(t)wik(t) (3.16)

where α is a new positive constant and wik(t) is the synaptic weight at time t.
Equivalently, we can write the above expression as the generalized activity product rule:

∆wik(t) = αyk(t)[cxi(t)− wik(t)] (3.17)

where c = η/α. If the weight wik(t) increases to the point where

cxi(t)− wik(t) = 0 (3.18)

a balance point is reached and the weight update stops.

3.6.3 Competitive learning

Competitive learning is a process in which the output neurons of the network compete among themselves
to be activated with the result that only one output neuron, is on at any time. There are three basic
elements to a competitive learning rule [Haykin, 1994]:

1. A set of similar neurons except for some randomly distributed synaptic weights. Therefore the
neurons respond differently to input signals.

2. A limit imposed on the strength of each neuron.

3. A competing mechanism for the neurons.
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Figure 3.7: Two simple forms of a competitive neural network. Feedforward connections from source
nodes to the neurons are excitatory and the connections among the neurons are inhibitory.

The output neurons that wins the competition are called winner-takes-all neurons and as a result of the
competition, they become specialized to respond to specific features in the input data. In the simplest
form of competitive learning, the neural network has a single layer of output neurons, each of which is
fully connected to the input nodes [Figure 3.7].

The network may include lateral connections among the neurons, as shown in [Figure 3.7], and
thereby perform lateral inhibition, with each neuron tending to inhibit the neuron to which it is laterally
connected. A neuron k is the winning neuron if its net internal activity level Sk for a given input vector
x is the largest one among all neurons in the network, where Sk is the combination of all the forward
and feedback inputs for neuron k. The output signal yk of winning neuron k is set to one and all the
others to zero. Each neuron is allowed a fixed amount of synaptic weight (typically, all synaptic weights
are positive), which is distributed among its input nodes; that is, we have

∑
i wik = 1 for all k and

where wik denotes the synaptic weight between input node i and neuron k. A neuron learns by shifting
synaptic weights from its inactive input nodes to the active ones, no learning takes place if the neuron
don’t respond to a particular input vector x. The change ∆wik applied to synaptic weight wik is defined
by the standard competitive learning rule:

∆wik =
{

η(xi − wik) if neruon k wins
0 if neruon k loses (3.19)

where η is the learning parameter. The effect of this rule is that the synaptic weight vector wk of the
winning neuron k is moved toward the input vector x.

3.7 Learning paradigms

Another factor to be considered is the manner in which a neural network relates to its environment during
learning, i.e. what kind of information is available to the network. In this context, a learning paradigm
refers to an model of the environment in which the neural network operates. There are three main
learning paradigms: supervised, unsupervised and reinforcement learning. Kohonen [Kohonen, 2001]
explains the difference in the three learning paradigms as follows.

Supervised learning Learning with a teacher, i.e. a learning scheme in which the average expected
difference between wanted output for training samples and the true output is decreased, using e.g.
the backpropagation algorithm.

Unsupervised learning Learning without a priori knowledge about the classification of samples, i.e.
learning without a teacher. Often the same as formation of clusters, after which the clusters can
be labeled, e.g. Kohonen’s SOM algorithm.
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Reinforcement learning Learning mode in which adaptive changes of the parameters due to reward
or punishment depend on the final outcome of a whole sequence of behavior. The results of learning
are evaluated by some performance index.

3.8 Learning protocols

The ways in which the input vectors are presented to the networks determine the learning protocol in
which the network learns its environment by adjusting its parameters. Two main principles are the
following ones:

Incremental Learning Weights are updated after each presentation of a training vector x. Also known
as pattern learning or stochastic learning if the training vectors are choose randomly.

Batch Learning Weights are updated after all training vectors have been presented once for the net-
work, i.e. the changes of the weights are accumulated until all vectors in the training set has been
presented. Also known as epoch learning.

3.9 A brief history of artificial neural networks

We will round off this short introduction to artificial neural networks with a brief look at some important
milestones within the research field of neural networks3.

One early reference concerning the theory about neural networks can be made to Alexander Bain
[Wilkes and Wade, 1997]. In his book ”Mind and Body: Theories of their relation” from 1873, he relates
the process of associative memory to the distribution of activity in neural grouping or neural networks
in modern terms. He found out that individual nerve cells carrying excitatory links to selected other
cells within a grouping, that each nerve cell is summating the degree of stimulation it receives from other
parts of the network, and that the same network can generate different output depending on its internal
connections. And what even more interesting is that his rule for associations (groupings) precedes that
of a later ones, better known as Hebb’s hypothesis from 1949. With Bains own words as reprinted in
[Wilkes and Wade, 1997]:

”when two impressions concur, or closely succeed one another, the nerve currents find
some bridge or place of continuity, better or worse, according to the abundance of nerve matter
available for the transition. In the cells or corpuscles where the currents meet and join, there
is, in consequence of the meeting, a strengthened connection or diminished obstruction – a
preference track for that line over lines where no continuity has been established.”

Bain emerges as the first theorist that goes beyond generalized statements towards providing detailed
examples and network drawings. Unfortunatly, Bain himself came to doubt about his work and not even
one of his own students, David Ferrier who published the classical work ”The Functions of the Brain”
in 1876 mention the details of Bains work. Therefore, much of what Bain discovered is now credited by
other researchers.

However, the modern era of neural networks is said to have began with the pioneering work of
McCulloch and Pitts in the 40s. Warren McCulloch (a psychiatrist and neuroanatomist) and Walter
Pitts (a mathematician and logician) published a paper 1943 entitled ”A logical calculus of the ideas
immanent in nervous activity” in the Bulletin of Mathematical Biophysics. In this paper, they proposed
a mathematical model of a biological neuron based on the all-or-nothing theory of biological neurons,
i.e, the output from a neuron is constant; either it is maximal or its nothing. What they proposed was
a binary threshold unit as a computational model for an artificial neuron which corresponded to their
view of the nervous system as a network of finite interconnection of logical devices. The McCulloch-Pitts
neuron works on binary signals and in discrete time; they receive one or more input signals and produce
an output signal in a similar way as described earlier in figure 2. The activation function they used was
a binary threshold function or step function, with a threshold at 0. The central conclusion of their paper

3The historical notes here are largely (but not exclusively) based on the following two sources: chapter 1 of the book
by Haykin [Haykin, 1994] and the introduction part in [Arbib, 2003]. If the authors finds i neccessary, specific references
will be made.
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was that any finite logical expression can be realized by a network built of McCulloch-Pitts neurons. This
conclusion was important in the sense that it showed that networks of rather simple elements connected
together can be computationally very powerful. However, in their model, the weights are constant, there
is no learning. The McCulloch-Pitts paper had an great influential, and it was not long before the next
generation of researchers added learning and adaptation.

Donald O. Hebb, a Canadian neurophysiologist, presented in his book ”The Organization of Be-
haviour”, from 1949 a theory of behaviour based on the physiology of the nervous system. The most
important concept to emerge from this work was his formal statement (known as Hebb’s postulate) of
how learning could occur. Learning was based on the modification of synaptic connections between
neurons. Specially, as restated in [Haykin, 1994],

”When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.”

The principle underlying this statement have become known as Hebbian learning.
Hebb was proposing not only that, when two neurons where active together the connection between

the neurons is strengthened, but also that this activity is one of the fundamental operations necessary
for learning and memory. This meant that the McCulloch-Pitts neuron had to be altered to at least
allow for this new biological proposal.

One of the first to exploit this idea, to make a learning rule for artificial neurons, was Frank Rosenblatt
in the late 50s. He used the McCulloch-Pitts neuron and the findings of Hebb in the developing of the
perceptron. The perceptron was originally designed as a linear pattern4 classifier, i.e, used for the
classification of a special type of patterns, which are linearly separable. This means that the input
vectors can be seen as points in a N -dimensional input space and what the perceptron does is to put a
discriminant in this space. This discriminant defines a hyperplane in the N -dimensional space.

In two dimension this discriminant is a line and can be found where the linear output Sk equals zero:

Sk = x1w2 + x2w2 + w0 = 0 (3.20)

therefore

x2 = −w1

w2
x1 +

θ

w2
(3.21)

[Figure 3.8] graphs this linear relation, which comprises a separating line having slope and intercept
given by:

slope =
w1

w2

intercept =
θ

w2

(3.22)

Rosenblatt’s learning algorithm, referred (as previously described) to as the perceptron convergence
procedure, was used to train the perceptron. Although the core idea of the perceptron was the incor-
poration of learning into the McCulloch-Pitts neuron, the thing that really caused a lot of enthusiasm
in the world of computer science was that Rosenblatt presented this learning algorithm together with a
theorem, called the perceptron convergence theorem. This theorem says that this learning algorithm will
converge to an optimal discriminant in a number of finite steps, if such a discriminant exists. This theo-
rem created a big hype regarding perceptrons and caused a lot of activity in the 50s and the 60s, people
thought that now we can compute anything, solve any problem, we don’t have to program anymore and

4Pattern recognition is one of the most common applications of a neural network. Pattern recognition is a combination
of feature extraction and classification. Feature extraction results in feature vecors that are used as input vectors that
are to be classified. Essentially, one may say that any application for neural networks can been transformed to a pattern
recognition task even if the actual application wasn’t pattern recognition, since the input to the network can be called
patterns in any case
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Figure 3.8: A 2-dimensional input space. Four points (0, 0), (1, 0), (0, 1) and (1, 1) in a two dimensional
input space are spanned by x1 and x2. Training of a perceptron with two inputs x1 and x2 would then
be to adjust the weights w1 and w2 such that the weights (and the threshold −θ with x0 = 1) defines the
slope and position of a line that separates the points into two classes. In this case class one consists of the
points (0, 0), (1, 0), (0, 1) and class two of the single point (1, 1).In this particular case, the perceptron
has been trained to implement the boolean function AND, i.e. when its fed with the points from class
one, it will output 0 (false) and the point from class two will yield a 1 (true). It acts just as a logic gate
as in McCulloch and Pitts case. The difference is that the perceptron is able of finding suitable weights
automatically.

so on. Unfortunately, a lot of people most have missed this last point, because its not always true, which
will soon be explained why.

About the same time as Rosenblatt, Bernard Widrow and Marcian ’Ted’ Hoff of Stanford developed
the Adaline (ADAptive LInear NEuron) which was very similar to the perceptron. The adaline is an
adaptive threshold logic element with a hardlimiter activation function outputting +− 1. The principal
difference between the perceptron and the adaline lies in the training procedure, adaline uses the least
mean square algorithm, as explained earlier, to train the adaline [Widrow and Lehr, 2003].

Unfortunately, both Rosenblatt’s and Widrow’s networks suffered from the same inherent limitations,
which were publicized in the influential book ”Perceptrons: An Introduction to Computational Geom-
etry” in 1969 by Minsky and Papert. This book contained a detailed analysis of the capabilities and
limitations of perceptrons. In their book, Minsky and Papert used the XOR-problem as an example
for the demonstration that the perceptron can only do linearly separable problem. Of course, this was
nothing new among those who did research on perceptrons and its variants, Rosenblatt himself had done
some research regarding this [Carpenter, 1989]. The XOR problem can be considered as a classification
problem for the perceptron to solve. That is, the perceptron can be constructed as a XOR logic function
that has two inputs (x1, x2) and one output y which should equal 1 if the input is (0, 1) or (1, 0) and
a 0 if the input is (1, 1) or (0, 0), see the truth table for the exclusive-or function in [Table 3.1]. This
input space can be plotted as in [Figure 3.9] and the aim of the perceptron is to find a discriminant that
separates this points.

Figure 3.9: A 2-dimensional input space.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.1: The exclusive-or (XOR) function’s
truth table.
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As can be seen from [Figure 3.9], no single line can separate the points, e.g. the problem is linearly
inseparable. A perceptron cannot solve any problem that is linearly inseparable. The solution to the
XOR problem in this case is to use more than one perceptron, e.g. multilayer perceptrons. In the first
layer, two perceptrons are set up to identify small, linearly separable sections of the inputs, e.g. one
perceptron implements the OR function and the other implements the AND function and then combining
their outputs into another perceptron in the output layer, which produce a final indication of which class
the input belongs to. Of course this solution to the XOR problem, that it is possible to construct a
network with layers of perceptrons with predefined weights, was also widely known. But what Minsky
and Papert’s stated in their book was that it is not possible to find a learning algorithm that can find
the correct weights automatically. This problem is also known as the credit assignment problem, since it
means that the network is unable to determine which of the input weights should be increased and which
should not, i.e. the problem of assigning credit to the perceptrons in the network so they can produce a
better solution next time.

This hasty conclusion made by Minsky and Papert’s had some devastated effects on the research
community, lot of people that financed this kind of research read this book, and almost over one night,
all funding into this field was stopped. This, combined with the fact that there were no powerful
computers at the time to run experiments on, caused many researchers to leave the field. For example,
a research team [Haykin, 1994] involved in the developing of a nonlinear learning filter, spent six years
building the filter with analog devices.

The years that followed is sometimes referred to as the ”ice age” by researchers in the neural net-
work community, because almost no one looked into the fields of neural networks except for researchers
in psychology and neuroscience, but from a physics and engineering perspective, the field was almost
completely dead[Haykin, 1994]. This period of time lasted between 1969 to mid 80s. Despite this, some
important activities and results was made during this period, where some notable ones are the work by
James Anderson and Teuvo Kohonen on associative memories in 1972 and the pioneering work on compet-
itive learning and self-organizing maps by von der Malsburg [von der Malsburg, 1973], Stephen Grossberg
[Grossberg, 1976] and also Kunihiko Fukushima, who explored related ideas with his biologically inspired
Cognitron [Fukushima, 1975] and Neocognitron [Fukushima, 1980] models. It was also during this time
period that Kohonen began his work on SOMs that he later published in 1982 [Kohonen, 1982].

The interest in neural networks re-emerged after two important theoretical results were attained in
the early eighties. In 1982, the American scientist John Hopfield used the idea of an energy function to
formulate a new way of understanding the computation performed by recurrent networks with symmetric
synaptic connections. This had the positive effect that physics became interested in the field. The second
was the solution to the credit-assignment problem by the rediscovery of the backpropagation algorithm in
1986. By replacing the discontinuous threshold function used by the perceptron with a continuous smooth
”sigmoid function” one could use the generalized delta rule, as explained earlier, for the minimization of
the output error, i.e. it was now possible to find out how much credit should be assign to the perceptrons
so their weights could be updated.

This algorithm was in fact described as early as 1974 by Paul Werbos in his Ph.D. thesis ”Beyond
regression: new tools for prediction and analysis in the behavioral sciences” at Harvard University.
Werbos’s work should unfortunately remain almost unknown in the scientific community until 1986, when
Rumelhart, Hinton, and Williams rediscovered the technique and, within a clear framework, described
their work in the article ”Learning Internal Representations by error propagation”, published in the
two-volumed book ”Parallel Distributed Processing: Explorations in the Microstructures of cognition”
by Rumelhart and McClelland, in that same year. This contributed to making the method widley known
and this book has since then been a major influence in the use of back-propagation learning.

In the last twenty years, thousands of papers have been written, and neural networks have found
many applications such as character recognition, image recognition, credit evaluation, fraud detection,
insurance, and stock forecasting. The field is showing new theoretical results and practical applications.
The use of neural networks as a tool to be used in appropriated situations and the fact that we know
very little about how the brain works makes the future of neural networks to look very promising.

116



Chapter 4

Self-Organizing Maps

“The SOM paradigm was originally motivated by an attempt to explain some functional struc-
tures of the brain. Quite surprisingly, however, the SOM turned out to be very useful in ex-
ploratory data analysis and started to live a life of its own: some 6000 scientific articles have
been based on it.” – Teuvo Kohonen, WSOM 2005, 5th Workshop On Self-Organizing Maps.

One of the main features of artificial neural networks is the ability to adapt to an environment by
learning in order to improve its performance to carry out whatever task its being trained for. The
learning paradigm we will be working with here is the unsupervised learning paradigm and we will use
it with competitive learning rules.

Unsupervised learning can also be thought of as self-organized learning [Haykin, 1994], in which the
purpose is to discover significant patterns or features in the input data, and to do the discovery without a
teacher. To do so, a self-organizing learning algorithm is provided with a set of rules of local nature, which
enables it to learn to compute an input-output mapping with specific desirable properties (by local it is
meant that the effect of changing a neurons synaptic weight is confined to its immediate neighborhood).
Different structures of self-organizing system can be used. For example, feedforward networks consisting
of an input layer and an output layer with lateral connections between the neurons in the output layer can
be used or a multilayer feedforward network in which the self-organization proceeds on a layer-by-layer
basis. Regardless of the structure, the learning process consists of repeatedly modifying the synaptic
weights of all the connections in the system in response to some input, usually represented by a data
vector, in accordance with the set of prescribed rules, until a final configuration develops. Of course, the
key question here is how a useful configuration finally can develop from self-organization. The answer
to this can be found in the following observation made by Alan Turing in 1952:

”Global order can arise from local interaction.”

This observation defines the essence of self-organization in a neural network, i.e, many randomly local
interactions between neighboring neurons can coalesce into states of global order and ultimately lead to
coherent behaviour.

Haykin [Haykin, 1994] identifies three different Self-Organizing Systems: Self-organizing systems
based on Hebbian learning, systems based on competitive learning, also known as self-organizing (fea-
ture) maps and systems rooted in information theory, emphasizing the principle of maximum information
preservation as a way of attaining self-organization. Only Self-Organizing systems based on competitive
learning are considered in this text, i.e. SOMs.

In a SOM, the neurons are placed at the nodes of a lattice that is usually one or two dimensional
(higher dimensions are possible but not as common) and in the final configuration of the map, which
depends on the competitive learning process, the localized feature-sensitive neurons respond to the input
patterns in a orderly fashion, as if a curvilinear coordinate system, reflecting some topological order
of events in the input space, were drawn over the neural network. A SOM is therefore characterized
by the formation of a topographic map of the input data vectors, in which the spatial locations (i.e.
coordinates) of the neurons in the lattice correspond to intrinsic features of the input patterns, hence the
name ”self-organizing (feature) map”.
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The SOM algorithm was developed by Teuvo Kohonen in the early 1980s [Kohonen, 1982] in an at-
tempt to implement a learning principle that would work reliably in practice, effectively creating globally
ordered maps of various sensory features onto a layered neural network. Kohonen’s work in SOMs and re-
lated earlier work of David Willshaw and Cristoph von der Malsburg [Willshaw and von der Malsburg, 1976]
and Stephen Grossberg [Grossberg, 1976], [Amari, 1980] were all inspired by the pioneering work of von
der Malsburg in 1973 [von der Malsburg, 1973]. Kohonen [Kohonen, 1990] credits the above studies for
their great theoretical importance concerning self-organizing tendencies in neural systems. However, the
results of the ordering of neurons was weak, no ”maps” of practical importance could be produced, order-
ing was either restricted to a one-dimensional case, or confined to small parcelled areas of the network.
Kohonen realized that this was due to the fact that the system equations used to form the maps have
to involve much stronger, idealized self-organizing effects, and that the organizing effect has to be maxi-
mized in every possible way before useful global maps could be created. After some experimenting with
different architectures and system equations, a process description was found that seemed to produce
globally well-organized maps [Kohonen, 1982]. In its computationally optimized form, this process is
now known as the SOM algorithm [Kohonen, 1990]. If not explicit stated, the main reference source for
the rest of this chapter is Kohonens book entitled ”Self-Organizing Maps”, sometimes also referred to as
[Kohonen, 2001].

4.1 Brain maps

The nineteenth century saw a major development in the understanding of the brain. At an overall
anatomic level, a major achievement was the understanding of localization in the cerebral cortex, e.g.
that the cortex of the human brain is organized according to functional areas such as speech control and
analysis of sensory signals (visual, auditory, somatosensory, etc) [Figure 4.1(a)]. Around 1900, two major
steps were taken in revealing the finer details of the brain. In Spain, pioneering work in brain theory
was done by Ramón y Cajál (e.g. 1906), whose anatomical studies of many regions of the brain revealed
that the particular structure of each region is to be considered as a network of neurons. In England, the
physiological studies of Charles Sherrington (1906) on reflex behaviour provided the basic physiological
understanding of synapses, the junction points between the neurons [Arbib, 2003].

More recent experimental studies about the finer-structure of the brain areas has revealed that, for
example, some areas are ordered according to some feature dimensions of the sensory signals, like the
somatosensory area, where response signals are obtained in the same topographical order on the cortex in
which they were received at the sensory organs. These structures are called maps [Figure 4.1(b)]. There
are three types of neuronal organizations that can be called ”brain maps”: sets of feature-sensitive cells
(single neurons or groups of neurons that respond to some distinct sensory input), ordered projections
between neuronal layers and ordered maps of abstract features (feature maps that reflect the central
properties of an organisms experiences and environment).These brain maps can extend over several
centimetres such as, for example, the somatotopic map. Based on numerous experimental data and
observations, it thus seems as if the internal representations of information in the brain are organized
and spatially ordered, i.e. groups of neurons dealing with similar features are also located near each
other. Although the main structure of the brain is determined genetically, there are reasons, due to its
complexity and dynamically nature, that some other fundamental mechanisms are used in the creation of
the brain structure. It was the possibility that the representation of knowledge in a particular category
of things in general might assume the form of a feature map that is geometrically organized over the
corresponding piece of the brain that made Kohonen to believe that one and the same general functional
principle might be responsible for self-organization of widely different representations of information
[Kohonen, 2001].
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(a) Brain areas. (b) The somatotopic map.

Figure 4.1: Images from [Kohonen, 2001] showing the localization in the cerebral cortex and ordering in
the somatosensory area of the brain.

4.2 Requirements for self-organization

The self-organizing process can be realized in any set of elements, illustrated schematically in [Figure 4.2],
where only a few basic operational conditions are assumed [Kohonen and Hari, 1999]: the broadcasting
of the input, selection of the winner, and adaptation of the models in the spatial neighborhood of the
winner.

Lets consider an two-dimensional array of elements, e.g. neurons, where each element is represented
by a model mi consisting of a set of numerical values (these values is usually related to some parameters
of the neuronal systems such as the synaptic efficacies), and where each model will be modified according
to the messages that the elements receives. First of all, assume the presence of some mechanism that
makes it possible to compare the ingoing message x (a set of parallel signal values) with all models mi. In
brain theory it is customary to refer to ”competition” between the elements when they are stimulated by
common input, and the element with the most similar model to the ingoing message is activated the most.
This element is called the ”winner” if it succeeds, while remaining active itself, in suppressing the activity
in the neighboring elements by, for example, lateral inhibition. The winner model is denoted by mc. The
above competitive process can be described as in [Kohonen, 1990]: Competitive learning is an adaptive
process, in which the neurons of the neural network are tuned to specific features of input. The response
from the network then tend to become localized. The basic principle underlying competitive learning
stems from mathematical statistics, namely, cluster analysis. The process of competitive learning can be
described as follows:

Assume a sequence of statistical samples of a vector x = x(t) ∈ <n where t is time, and a set of
variable reference vectors mi(t) : mi ∈ <n, i = 1, 2, 3, . . . , k.

Assume that the mi(0) have been initialized in some proper way, random selection may do.
Competitive learning then means that if x(t) can be simultaneously compared with each mi(t) at

each successive instant of time then the best-matching mi(t) is to be updated to match even more closely
the current x(t).

If comparison is based on some distance measure d(x,mi), updating must be such that if i = c is the

Figure 4.2: [Kohonen and Hari, 1999] A self-organizing set. An input message x is broadcast to a set of
models mi, of which mc best matches x. All models that lie in the vicinity of mc (larger circle) improve
their matching with x. Mc differs from one message to another.
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index of the best-matching reference vector, then d(x, mc) shall be decreased, and all the other reference
vectors with i 6= c left intact.

In the long run different reference vectors becomes sensitized to different domains of the input variable
x. If the probability density function p(x) of the samples x is clustered, then the mi tend to describe
the clusters.

The final requirement for self-organizing is then that all the models in the local vicinity of the winning
model(s) also get modified such that they also will resemble the prevailing message more accurately
then before. When the models in the neighborhood of the winner start simultaneously to resemble the
prevailing message x more accurately, they also tend to become more similar mutually, i.e. the differences
between all the models in the neighborhood of mc are smoothed. After the models mi have been exposed
for different messages at different time steps all over the array, they tend to start acquire values that
relate to each other smoothly over the whole array, in the same way as the original messages x in the
input space do. The result is the emergence of a topographically organized map.

4.3 The Mexican Hat

The best self-organizing results are obtained if the following two partial processes are implemented in
their purest forms:

1. Decoding of the neuron ”the winner” that best match with the given input pattern.

2. Adaptive improvement of the match in the neighborhood of the neurons centered around the
”winner”

The former operation is signified as the winner takes all function. Traditionally, the winner takes all
function has been implemented in neural networks by lateral-feedback connections. For an example of a
SOM algorithm that implements lateral feedback, see [Sirosh and Miikkulainen, 1993].

If we consider a one-dimensional lattice of neurons as depicted in [Figure 4.2] we see that it contains
two types of connections; there are feedforward connections from an external excitation input source to the
neurons in the lattice (the output layer) with associated weights and there are a set of internal feedback
connections between the nodes in the lattice, both self-feedback and lateral feedback ones, also with
associated weights. The magnitude and type (excitatory and inhibitory) of these weights are functions
of the geometrical distance between the neurons on the lattice. Following biological motivations, a
typical function that represents the values of the lateral weights versus the distance between neurons
on the lattice, is the Mexican hat function. The function is proportional to the second derivative of the
gaussian probability density function and is formally written as [Equation 4.1], its shape is depicted in
[Figure 4.3].

f(x) =
(

2√
3
π−1/4

)(
1− x2

)
e−x2/2 (4.1)

According to the shape of the Mexican hat function, we may distinguish three distinct areas of lateral
interactions between neurons [Kohonen, 2001] as depicted in [Figure 4.3].

By means of lateral interactions, positive(excitation) and negative(inhibition), one of the neurons
becomes the ”winner” with full activity, and by negative feedback it then suppresses the activity of all
other cells. For different inputs the ”winners” alternate.

Hence, in presence of lateral feedback, the dynamic behavior of the network activity can be described
as follows [Haykin, 1994]:

Let x1, x2, . . . , xp denote the input signals (excitations) applied to the network, where p is the number
of nodes in the input layer [Figure 4.4].

Let Nj define the region over which lateral interactions are active, usually referred to as the neigh-
borhood of neuron i and let cik denote the lateral feedback weights connected to neuron i inside this
neighborhood.

Let y1, y2, . . . , yN denote the output signals of the network, where N is the number of neurons in the
network.

The output signal (response) of neuron i is then equal to:
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Figure 4.3: One-dimensional ”Mexican hat” function. The horizontal axis represents the distance in
the lattice between neuron i and its neighbor neurons. The vertical axis represents the strength of the
connections between neuron i and its surrounding neighborhood. (1) A short-range lateral excitation
area. (2) A penumbra of inhibitory action. (3) An area of weaker excitation that surrounds the inhibitory
penumbra; this third area is usually ignored.

Figure 4.4: One-dimensional lattice of neurons with feedforward connections and lateral feedback con-
nections; the latter connections are shown only for the neuron at the center of the array. First column
of neurons make up the input layer, second column of neurons make up the output layer.

yi = f

(
Ii +

∑
k∈Ni

cikyk

)
i = 1, 2, . . . ,m (4.2)

where f is a standard sigmoid-type nonlinear function that limits the value of yi and ensures that
yi = 0. The total external control exerted on neuron j by the weighted effect of the input signals is
described by:

Ii =
∑
l=1

pwilxl (4.3)

The solution to the nonlinear equation [Equation 4.2] is found iteratively:

yi(n + 1) = f

(
Ii + β

∑
k∈Ni

cikyk(n)

)
i = 1, 2, . . . ,m (4.4)

where n denotes an iteration step. The parameter β controls the rate of convergence of the iteration
process. [Equation 4.4] represents a feedback system. The system includes both positive and negative
feedback, corresponding to the excitatory and inhibitory parts of the Mexican hat function, respectively.
The limiting action of the nonlinear activation function f causes the spatial response yj(n) to stabilize
in a certain fashion, dependent on the value assigned to β. If β is large enough, then in the final
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state corresponding to n → inf, the values of yj tend to concentrate inside a spatially bounded cluster,
referred as a ”activity bubble”. The bubble is centred at a point where the initial response yj(0) due to
the external input Ij is maximum. The width of the bubble is governed by the ratio of the excitatory
to inhibitory lateral connections: the bubble becomes wider for more positive feedback, and sharper
for more negative feedback. If the negative feedback is too strong, formation of the activity bubble is
prevented. Consequence of bubble formations is the topological ordering among the output neurons.

However, the SOM algorithm proposed by Kohonen [Kohonen, 1990] uses a ”shortcut” or a ”engi-
neering solution” to the model described above. He suggested that the effect accomplished by lateral
feedback, i.e.the bubble formation, can be enforced directly by defining a neighborhood set Nc around the
winning neuron c. The lateral connections and its weights are discarded and a topological neighborhood
of active neurons that corresponds to the activity bubble is introduced instead. Further, for each input
signal, all the neurons within Nc are updated, whereas neurons outside Nc are left intact. By adjusting
the size of the neighborhood set Nc, lateral connections can be emulated, making it larger corresponds
to enhanced positive feedback, while enhancement of negative feedback is obtained by making it smaller.

The computational gain with this model is that instead of recursively computing the activity of each
neuron according to [Equation 4.4], this model finds the winning neuron and assumes that the other
neurons are also active if they belong to the neighborhood of the winning neuron. Another problem
with the former model, is that the trained map can exhibit several regions of activity instead of just one.
This is an immediate consequence of the Mexican hat function for lateral interactions which primarily
influence neurons nearby, thus far away regions of activity has little interaction.

4.4 The SOM paradigm

With this short introduction we want to emphasize that the SOM and the SOM algorithm refers to two
different aspects of the SOM paradigm, something that’s not always made clear in the literature. The
SOM is the result of the converged SOM algorithm.

The basic SOM is as a nonlinear, ordered, smooth mapping of high-dimensional data manifolds onto
the elements of a regular, low-dimensional array. The mapping is implemented in the following way:

1. Define the set of input variables xj as a real vector x = [x1, x2, . . . , xn]T ∈ <n.

2. Associate with each element in the SOM array a parametric real vector mi = [wi1, wi2, . . . , win]T ∈
<n called a model.

3. Define a distance measure between x and mi denoted d(x,mi).

The image of an input vector x on the SOM array is then defined as the array element mc that best
matches with x, i.e. that has the index c = arg mini (d(x,mi)).

The main task is to define the mi in such a way that the mapping is ordered and descriptive of the
distribution of x. The process in which such mappings are formed is defined by the SOM algorithm.
This process is then likely to produce asymptotically converged values for the models mi, the collection
of which will approximate the distribution of the input samples x(t), even in an ordered fashion..

Note: It is not necessary for the models mi to be vectorial variables. It will suffer if the distance
measure d(x, mi) is defined over all occurring x items and a sufficiently large set of models mi. For
example the x(t) and mi may be vectors, strings of symbols, or even more general items.

4.5 The incremental SOM algorithm

Kohonen’s original SOM algorithm can be seen to define a special recursive regression process, in which
only a subset of the models are processed at every step. The SOM algorithm we are about to describe
finds a mapping from the input data space Rn onto a two-dimensional array of nodes, called a lattice, as
depicted in [Figure 4.5].

With every node i, a parametric model vector, also called reference vector mi = [wi1, wi2, . . . , win]T ∈
<n is associated. Before recursive processing, the mi must be initialized. Random values for the com-
ponents of mi may do, but if the initial values of the mi are selected with care, the convergence can be
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Figure 4.5: A SOM of size X × Y in which the activation area of the BMN are depicted.

made to converge much faster. The lattice type of the array can be defined to be rectangular, hexagonal
or even irregular. For visual display, hexagonal is effective.

Let x = [x1, x2, . . . , xn]T ∈ <n be the input vector that is connected to all neurons in parallel via
variable scalar weights wij and x ∈ <n be a stochastic data vector.

The SOM can then be said to be a ”nonlinear projection” of the probability density function p(x)
of the high-dimensional input data vector x onto the two-dimensional array. The central result in self-
organization is that if the input patterns have a well-defined probability density function p(x), then the
weight vectors associated with the models mi should try to imitate it [Kohonen, 1990].

4.5.1 Selection of the best matching node (”Winner-takes-all”)

Vector x may be compared with all the mi in any metric; in many practical applications, the smallest of
the Euclidian distance ‖x−mi‖ can be made to define the best matching node (BMN), signified by the
subscript c:

c = arg min
i
‖x−mi‖ which means the same as ‖x−mc‖ = min

i
‖x−mi‖ (4.5)

4.5.2 Adaptation (Updating of the weight vectors)

During learning, or the process in which the ”nonlinear projection” is formed, those nodes that are
topographically close in the array up to a certain geometric distance will activate each other to learn
something from the same input x, see [Figure 4.2]. This will result in a local relaxation or smoothing
effect on the weight vectors of neurons in this neighborhood, which in continued learning leads to global
ordering.

This is achieved by defining a neighborhood set Nc around node c and at each learning step only
update those nodes that are within Nc and keep the rest of the nodes intact. The width or radius
defining which nodes are in Nc (refered to as the ”radius of Nc”) can be time-variable. Experimental
results have shown that best global ordering is achieved if Nc is very wide in the beginning of the
learning process and shrinks monotonically with time. Explanations for this is that in the beginning a
rough ordering among the mi values are made, and after narrowing the Nc, the spatial resolution of the
map is improved.

The following updating process is then used:

mi(t + 1) =
{

mi + α(t)[x(t)−mi] if i ∈ Nc(t)
mi if i /∈ Nc(t)

(4.6)

where t = 0, 1, 2, . . . (is the discrete-time coordinate (an integer) and α(t) is a scalar-valued learning-rate
factor 0 < α(t) < 1 that decreases with time.
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However, instead of using the simple neighborhood set where each node in the set is affected equally
much we can introduce a scalar ”kernel” function hci = hci(t) as a neighborhood function defined over
the lattice nodes, then the updating process may read as:

mi(t + 1) = mi(t) + hci(t)[x(t)−mi(t)] (4.7)

For convergence it is necessary that hci(t)→ 0 when t→ inf. Usually hci(t) is a function of the distance
between nodes c and i in the array, i.e. hci(t) = h(‖rc − ri‖, t), where rc and ri denotes the coordinates
of node c and i respectively in the array. With increasing ‖rc − ri‖ we then have that hci→ 0.

Two simple choices for hci(t) occur frequently, whereas the simpler of them is the above neighborhood
set Nc defined as a function of time Nc = Nc(t), whereby hci(t) = α(t) if i ∈ Nc and hci(t) = 0 if i ∈ Nc.
Both α(t) and the radius of Nc(t) usually decreases monotonically in time.

The other choice is a much smoother neighborhood kernel, known as the Gaussian function:

hci(t) = α(t)e−
‖rc−ri‖

2

2σ2(t) (4.8)

where α(t) is another scalar-valued learning-rate factor and the parameter σ(t) defines the width of the
kernel, the latter corresponds to the radius of Nc(t) above. Both α(t) and σ(t) are some monotonically
decreasing functions of time.

4.6 Selection of parameters

The learning process involved in the computation of a feature map is stochastic in nature, which means
that the accuracy of the map depends on the number of iterations of the SOM algorithm. We have
seen that there are many parameters involved in defining and training a SOM, different values will have
different effects on the final SOM. The values of the parameters are usually determined by a process of
trial and error. However, the following advices based on our experience and observations made by others
can provide a useful guide.

The Size of SOM determines the degree of generalization that will be produced by the SOM algorithm
- the more nodes, the finer the representation of details, while the fewer nodes, the broader level of
generalization. However, the same broad patterns are revealed at each level of generalization. Another
issue regarding the size of the SOM, is that more nodes means longer training time. For example, a 20×20
SOM takes four times longer to train then a 10× 10 SOM. Sammon’s mapping [Sammon Jr., 1969] can
be used on the data set to get some hints on the structure of the data set and by that helping in the
process of selecting number of nodes in the lattice.

The learning steps must be reasonably large, since the learning is a stochastic process. A ”rule of
thumb” is that for good statistical accuracy, the number of steps must be at least 500 times the number
of network nodes.

The Learning rate parameter α should start with a value close to 1 and then during the first 1000 steps
it should be decreasing monotonically but kept above 0.1. The exact form of variation of α = α(t) is not
critical, it can be linear, exponential or inversely proportional to t. For instance, α(t) = 0.9(1− t/1000)
may be a reasonable choice. It is during the initial phase of the algorithm that the topological ordering of
the mi occurs. This phase of the learning process is therefore called the ordering phase. The remaining
(relatively long) iterations of the algorithm are needed for the fine adjustment of the map; this second
phase of the learning process is called the convergence phase. For good statistical accuracy, α(t) should
be maintained during the convergence phase at a small value (on the order of 0.01 or less) for a fairly
long period of time, which is typically thousands of iterations. Neither is it crucial whether the law for
α(t) decreases linearly or exponentially during the convergence phase.

The Neighborhood function can be chosen to be the simple neighborhood-set definition of hci(t) if the
lattice is not very large, e.g. a few hundred nodes. For larger lattices, the Gaussian function may do.

The size of the Neighborhood must be chosen wide enough at the start so the map can be ordered
globally. If the neighborhood is too small to start with, various kinds of mosaic-like parcellations of the
map are seen, between which the ordering direction changes discontinuously. This phenomena can be
avoided by starting with a fairly wide neighborhood set Nc = Nc(0) and letting it shrink with time. The
initial radius can even be more than half the diameter of the network. During the first 1000 steps or so,
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when the ordering phase takes place, and α = α(t) is fairly large, the radius of Nc can shrink linearly to
about one unit, during the convergence phase Nc can still contain the nearest neighbors of node c.

4.7 Incomplete data

The SOM algorithm is very robust, compared to other neural networks. One problem that frequently
occurs in practical applications, especially in applying methods of statistics, is caused by missing data. It
has been shown that the SOM algorithm is very robust to missing data in [T.Samad and S.A.Harp, 1992],
in fact, they claimed that it is better to use incomplete data then to simply discard the dimension from
which there are missing data. However, if a majority of the data is missing from a dimension, its better
to discard that dimension totally from the learning process [Kaski, 1997]. In training of the SOM with
incomplete data, the contribution of missing data is assumed to be zero, i.e. ‖x −mi‖ = 0. Note that
the reference vector is represented in every dimension and only those dimension that are represented by
the input vector causes changes in the reference vector.

4.8 Quality measure of the SOM

Although some optimal map always exists for the input data, choosing the right parameters from start
is a tricky task. Since different parameters and initializations gives rise to different maps, it is important
to know whether the map has properly adapted itself to the training data. This is usually done with
an cost function that explicitly defines the optimal solution but since it has been shown that the SOM
algorithms not the gradient of any cost function, at least in the general case, other quality measures has
to be used. Two commonly used quality measures that can be used to determine the quality of the map
and helping in choosing suitable learning parameters and map sizes are the average quantization error
and the topographic error.

4.8.1 Average quantization error

Average quantization error is as a measure of how good the map can fit the input data and the best
map is expected to yield the smallest average quantization error between the BMNs mc and the input
vectors x. The mean of ‖xi −mc‖, defined via inputting the training data once again after learning, is
used to calculate the error with the following formula:

Eq =
1
N

N∑
i=1

‖xi −mc‖ (4.9)

where N is the number of input vectors used to train the map
A SOM with a lower average error is more accurate than a SOM with higher average error.

4.8.2 Topographic error

Topographic error measures how well the topology is preserved by the map. Unlike the average quan-
tization error, it considers the structure of the map. For each input vector, the distance of the BMN
and the second BMN on the map is considered; if the nodes are not neighbors, then the topology is not
preserved This error is computed with the following method:

Et =
1
N

∑
k=1

Nu(xk) (4.10)

where N is the number of input vectors used to train the map and u(xk) is 1 if the first and second BMN
of xk are not direct neighbors of each other. Otherwise u(xk) is 0.

Note: In measuring the quality of a SOM consideration must be taking for both the average expected
error as well as the topographic errors.
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4.9 Summary of the SOM algorithm

The essence of Kohonen’s SOM algorithm is the idea of discarding the Mexican hat lateral interactions
for a time depended ”topological neighborhood” function as a way of algorithmically emulate the way
self-organizing takes place in biological system. The algorithm can be summarized in two steps:

1. Locate the BMN

2. Increase matching at this node and its topological neighbors

The two steps are however usually carried out as follows:

1. Initialize network For each node i, initialize corresponding reference vector mi at random. Set the
initial learning rate a close to unity and the radius s to be at least half the diameter of the lattice.

2. Present input Present the input vector x(t) at time t to all nodes in the lattice simultaneously.

3. Similarity matching Find the BMN c at time t using the minimum-distance Euclidian criterion:

c = arg min
i
‖x(t)−mi(t)‖, i = 1, 2, . . . , N (4.11)

where N is the total number of nodes in the lattice.

4. Update Adjust the reference vector mc and all reference vectors mi within the neighborhood of the
winning node c using:

mi(t + 1) = mi(t) + hci(t)[x(t)−mi(t)] where hci(t) = α(t)e−
‖rc−ri‖

2

2σ2(t) (4.12)

5. Repeat Decrease learning rate and the width of the neighborhood. Repeat from step 2 by choosing
a new input vector x(t + 1) until a predefined stop criteria is reach.

4.10 The Dot-Product SOM algorithm

Normalization is not necessary in principle, but sometimes it may be necessary to normalize the input x
before it is used in the algorithm. Reasons for this can be to ensure that the resulting reference vectors
are kept in the same dynamic range. Another aspect is that it is possible to apply many different metrics
in matching, however then the matching and updating laws should be mutually compatible with respect
to the same metric. For instance, if the dot-product definition of similarity of x and mi is applied, the
learning equations should read:

xt(t)mc(t) = max
i
{xT (t)mi(t)} (4.13)

mi(t + 1) =

{
mi(t)+α′(t)x(t)
‖mi(t)+α′(t)x(t)‖ if i ∈ Nc(t)
mi(t) if i /∈ Nc(t)

where 0 < α′(t) < inf, for instance, α′(t) = 100/t. This process automatically normalizes the reference
vectors at each step. Normalization usually slows down training process but during matching, the dot-
product criterion is very simple and fast. The Euclidian distance and the dot products are the most
widely used matching criteria’s, although many others have been used.

4.11 The batch SOM algorithm

Another type of SOM algorithm is the batch(-map) SOM algorithm [Kohonen, 1993], it is also an iterative
algorithm, but instead of using a single data vector at time t, the whole data set is presented to the map
before any adjustments are made – hence the name ”batch”. The algorithm is outlined below:
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Selection of the BMN Consider a set of input samples X and a two-dimensional lattice where with
each node i a reference vector mi is associated. The initial values of the mi can be selected at
random from the domain of input samples. With the use of a distance measure d(x,mi), the node
that is most similar to the input x ∈ X is found and x is then copied into a sublist associated with
that node.

Adaptation (Updating of the reference vectors) After all input samples x ∈ X have been dis-
tributed among the nodes sublists, the reference vectors can be updated. This is done by finding
the ”middlemost” samples xi or xi

′ for each node i and replacing the old value of mi with xi or
xi

′.

Start by considering the neighborhood set Ni around reference vector mi. The neighborhood set
consists of all nodes within a certain radius from node i. In the union of all sublists in Ni, find the
”middlemost” sample xi which have the smallest sum of distances from all the samples x(t) where
t ∈ Ni. This ”middlemost” sample can be either of two types:

1. Generalized set median: If the sample xi is part of the input samples x ∈ X.

2. Generalized median: If the sample xi is not part of the input samples x ∈ X. Since we are
only using a sample of inputs x ∈ X it may be possible to find an item xi that has an even
smaller sum of distances from any of the x ∈ Ni, this item xi

′ is called the generalized median.

The middlemost sample xi or xi
′ that has been found is used to replace the old value of mi. This

is done for each node i, by always considering the neighborhood set Ni around each node i, i.e. by
replacing each old value of mi by xi or xi

′ in a simultaneous operation.

The above should then be iterated, i.e. all the samples x ∈ X are again distributed into the sublists
(which will now most likely change since each mi has been updated in the previous iteration) and new
medians are computed.

Formally, the above process uses a concept known as Voroni tessellation when forming the neighbor-
hood sets. It is a way of partitioning a set of data vectors into regions, bordered by lines, such that each
partition contains a reference vector mi that is the ”nearest neighbor” to any vector x within the same
partition. These lines together constitute the Voronoi tessellation. All vectors that have a particular
reference vector as their closest neighbor are said to constitute a Voronoi set V . That is, the reference
vectors mi and the search for the BMN defines a tessellation of the input space into a set of Voronoi sets
Vi, defined as:

Vi = {x : ‖x−mi‖ < ‖x−mn‖∀i 6= n} where x ∈ X (4.14)

In each training step, the map units are associated with one such Voronoi set, i.e. the sublist of each
reference vector mi continaing the data vectors x that have it as BMN constitute a Voronoi set.

If a general neighborhood function hci is also used, then the the formula for updating the reference
vectors becomes:

mi =
∑

x∈X hci(t)x∑
x∈X hci

(4.15)

where c is the bmn for the current sample x.
This algorithm is particularly effective if the initial values of the reference vectors are roughly ordered.

This algorithm contains no learning rate parameter and therefore it seems to yield more stable asymptotic
values for the mi compared to the original SOM algorithm [Kohonen, 1993].

4.12 The SOM as a clustering and projection algorithm

The SOM is very useful in producing simplified descriptions and summaries of large datasets. It creates
a set of topographic ordered reference vectors that represents the data set on a two-dimensional grid.
This process can be described in terms of vector quantization (VQ) and vector projection (VP). The com-
bination of these two methods is called vector quantization-projection (VQ-P) methods [Vesanto, 1999],
and clearly, the SOM can be categorized as such.
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• VQ is used as a way of reducing the original data to a smaller but still representative set of
the original data. In the SOM, the reference vectors for the models or nodes in the grid, are
representative for a larger set of data vectors in the input space.

• VP is used to project high-dimensional data vectors as points on a low-dimensional, usually 2D,
display. In the SOM, this is defined as the location of the data vectors’ BMN.

In the SOM process, VQ and VP interacts with each other, in contrast to a serial combination of the
two methods, where VQ is performed first (by a clustering algorithm like K-means) and then a VP is
performed (by a projection method like Sammons’s mapping).

4.12.1 Vector quantization

Clustering means partitioning of a data set into a set of clusters Ki, i = 1, 2, . . . , c, where each cluster
is supposed to contain data that is highly similar. One definition of optimal clustering is a partitioning
that minimizes distances within and maximizes distance between clusters where distance is used as a
measure of dissimilarity, i.e. the magnitude of the distance implies how ”unlike” two data items are.
The Euclidian distance is a commonly used distance criterion. A survey of different clustering algorithms
can be found in [Jain et al., 1999].

Algorithms based on VQ performs an elementary unsupervised clustering and classification of the
data vectors in an (input) space [Kohonen, 2001]. Formally the goal of VQ can be stated as; given a
set of input data vectors x ∈ <n find a finite number of reference vectors mi ∈ <n, i = 1, 2, . . . , k that
form a quantized approximation of the distribution of the input data vectors. Once suitable reference
vectors have been determined (using a VQ algorithm), VQ (or approxomation) of an input vector x
simply means finding the reference vector mc closest to the input vector x (in input space). Finding the
closest reference vector is usually done using the Euclidian metric as in c = arg mini ‖x −mi‖ where c
is the index of the closest reference vector mc. The optimal formation of reference vectors, when using
the Euclidean metric, means finding reference vectors that minimize the average expected square of the
quantization error, defined as:

E =
∫
‖x−mc‖p(x)dx (4.16)

where p(x) is a probability density function of x for the input space and the integration is performed over
the entire input space. Since a closed form1 solution for the determination of the mi is not available,
at least for a general p(x), an iterative approximation algorithm is used. See [Kohonen, 2001] for the
derivation of such an algorithm and a more rigorous study of VQ. The SOM is therefore very closely
related to VQ-based clustering algorithms.

Competetive (or winner-takes-all) neural networks can be used to cluster data. Kohonen has de-
veloped two methods for automatic clustering of data, one supervised methods called learning vector
quantization and one unsupervised methods called the SOM. Both methods build on the VQ methods
originally developed in signal analyis for compressing (signal) data. In learning vector quantization only
one or two winning node’s reference vectors are updated during each adaptation stage, whereas in the
SOM the reference vectors for a neighborhood of nodes in the SOM’s lattice are updated simultaneously.

One well known clustering algorithm that performs clustering in a similar way as VQ is the well known
K-means algorithm. The K-means algorithm is a very popular clustering algorithm, mainly because it is
easy to implement and its time complexity is O(n), where n is the number of data vectors. The algorithm
is sensitive to the choice of initial reference vectors and may therefore converge to a local minima. The
objective of the K-means algorithm is to minimize the distance between the input data vectors and the
reference vectors. The algorithm minimizes the sum of squared errors:

E =
c∑

i=1

∑
x∈Ki

‖x−mi‖2 (4.17)

where c is the number of clusters and the reference vector mi is the mean of all vectors x in the cluster
Ki.

1A closed form (expression) is any formula that can be evaluated in a finite number of standard operations.
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The K-means algorithm first selects K data vectors, from the set of data vectors to cluster, to be
used as initial reference vectors mi. Next K clusters are formed by assigning each available data vector
x to its closest reference vector mi. The mean xi for each cluster is the computed and used as the new
value of mi. The process is repeated until it is determined that the objective function has reached a
minima, i.e. there’s a minimal decrease in the sum of squared errors. Note that we have explained the
K-means algorithm in SOM terminology, usually the reference vectors is defined in terms of a centroid,
which is the mean of a group of points.

The K-means algorithms and the SOM algorithms are very closely related, if the width of the neigh-
borhood function is zero (including only the BMN) then the incremental SOM algorithm acts just as the
incremental K-means algorithm. Similarly, the batch version of the K-means algorithm is closely related
to the batch SOM algorithm. Although they are very closely related, in K-means the K reference vectors
should be chosen according to the expected numbers of clusters in the data set, whereas in the SOM
the number of reference vectors can be chosen to be much larger, irrespective of the number of clusters
[Kaski, 1997].

4.12.2 Vector projection

The purpose of projection methods is to reduce the dimensionality of high dimensional data vectors.
The projection represents data in a low dimensional space, usually two-dimensional, such that certain
features of the data is preserved as good as possible [Kohonen, 2001]. Typically, such features are the
pair wise distances between data samples or at least their order and subsequently preservation of the
shape of the set of data samples. Projection can also be used for the visualization of data if the output
space is at most 3 dimensional.

Several projection methods are discussed in [Kaski, 1997], linear projections such as principal com-
ponent analysis (PCA), nonlinear projections such as multidimensional scaling (MDS) methods and the
closely related Sammon’s mapping. Kohonen [Kohonen, 2001] also mentions nonlinear PCA and curvlin-
ear component analysis (CCA). However, these methods seem to only differ in how the different distances
are weighted and how the representations are optimized [Kaski, 1997].

Linear projection

PCA was first introduced by Pearson in 1901 and further developed by the statistician Hotelling in 1933
and then later by Loève in 1963 and is a widely used projection method. PCA can be used to display the
data as a linear projection on a subspace of lower dimension of the original data space that best preserves
the variance in the data but since PCA describes the data in terms of a linear subspace, it cannot take
into account nonlinear structures, structures consisting of arbitrarily shaped clusters or curved manifolds
[Kaski, 1997]. Assuming that the dataset is represented in a proper way as data vectors, PCA is done by
the use of matrix-algebra2: first the covariance matrix of the input data is calculated and then, secondly,
the eigenvectors and eigenvalues are calculated for this matrix. The principal components of the data
set is then the eigenvector with the highest eigenvalue. In general, the eigenvectors are ordered by their
eigenvalues, from high to low. By leaving out eigenvectors with low eigenvalues, the final dataset will
be of lesser dimension than the original one. Of course, some information may be lost, but since the
eigenvalues were low, the loss will be minor. It should be noted that there exists a nonlinear version
of PCA, called principal curves. However, as it turns out, to be used in practical computations, the
curves have to be discretizated and discretizated principal curves are then essentially equivalent to the
SOMs [Kohonen, 2001]. Thus, the conception of principal curves is only useful in providing one possible
viewpoint to the properties of the SOM algorithm.

Non-linear projection

In 1969, a projection method called, Sammon’s mapping, was developed [Sammon Jr., 1969]. Sammon’s
mapping is closely related to the group of metric based MDS methods in which the main idea is to find
a mapping such that the distances between data vectors in the lower dimensional space is as similar as
possible to the distance of the corresponding data vectors in the original metric space [Kohonen, 2001].

2Maths packages like MATLAB have inbuilt functions for doing such calculations, see the section entitled SOM Toolbox
for MATLAB
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The basic idea in Sammon’s mapping and other projection methods is to represent each high-dimensional
data vector as a point in a 2 dimensional space and then arrange these points in such a way that the
distances between the points resemble the distances in the original space (defined by some metric) as
faithfully as possible. More formally, assume we are given a distance matrix M consisting of pair wise
distances between all vectors xi and xj in the input space <n, where n is the dimensionality of the input
space. M is then defined by its elements dij , where dij = (xi, xj). Further, let ri ∈ <2 be the location or
coordinate vector of the data vector xi ∈ <n. With N we denote the distance matrix consisting of the
pair wise distances between all the coordinate vectors ri and rj in the 2 dimensional space <2 measured
with the Euclidian norm ‖ri − rj‖. The goal is then to adjust the ri and the rj vectors on the <2 plane
so that the distance matrix N resembles the distance matrix M as well as possible, i.e. to minimize a
cost function represented as an error function E by way of a iterative process. The error E function is
defined as (following the notation used in [Kohonen, 2001]:

E =
1∑

i

∑
j>i dij

∑
i

∑
j>i

(dij − ‖ri − rj‖)2

dij
Sammon’s mapping (4.18)

E =
1∑

i

∑
j>i dij

∑
i

∑
j>i

(
dij − ‖ri − rj‖2

)
MDS (4.19)

E =
1∑

i

∑
j>i dij

∑
i

∑
j>i

(dij − ‖ri − rj‖)2

e‖ri−rj‖
CCA (4.20)

This leads to a configuration of the ri points such that the clustering properties of the xi data vectors
are visually discernible from this configuration. Thus, the inherent structure of the original data can be
told from the structure detected in the 2-dimensional visualization. If we compare the above methods
with each other, we see that the difference lies in how the distances are weighted. In Sammon’s mapping
small distances in input space are weighted as more important, in CCA the small distances in output
space are weighted as more important and in the case of MDS no weighting is used resulting in larger
distances having more impact on the error function. The weighting of distances results in projections
that better preserve the local shape of the structure of the input space, whereas no weighting as in the
MDS case gives a better global shape of the structure in the input space.

Kohonen recommends that Sammon’s mapping is used for a preliminary analysis of the data set used
for SOMs, because it can roughly visualize class distributions, especially the degree of their overlap.

In [Figures 4.6(a), 4.6(b), 4.6(c)] projections based on the same dataset are shown, the dataset is a
rating dataset involving 17 movies and 808 users. Comparing [Figure 4.6(a)] with [Figure 4.6(b)] shows
that Sammon’s mapping spreads the data in a more illustrative way then PCA. In [Figure 4.6(c)] the
effect of using a fixed grid size combined with the topographic ordering that is enforced by the SOM
algorithm is shown.

4.12.3 Comparison of the SOM to other VQ and VP algorithms

The SOM as discussed by Kohonen in [Kohonen, 2001] combines clustering and visualization operations,
however, some essential differences to the methods previously described can be found in [Kohonen, 2001]
and [Kaski, 1997]:

1. The SOM represents a open set of multivariate data vectors by a finite set of reference vectors
mi,like in K-means clustering. This is not the case in the above discussed projection methods
where the number of input samples equal the number of outputs.

2. Unlike K-means, the number of reference vectors should not equal the number of expected clusters,
instead there numbers of reference vectors should be fairly large. This has to do with the neigh-
borhood function, which makes neighboring nodes on the grid more similar each other, and thus
neighboring nodes reflect the properties of the same rather than different clusters. The transition
from one cluster to another on the grid is gradual taking place over several nodes. If the goal is to
create a few, but quantitative clusters, the SOM has to be clustered. [Vesanto and Alhoniemi, 2000]
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(a) Linear projection of the data as points onto the
two-dimensional linear subspace obtained with PCA.

(b) Non-linear projection onto a two dimensional space using
Sammons’s mapping.

(c) Data placed on their BMN in a 10x10 grid using a SOM
obtain using the incremental SOM algorithm.

Figure 4.6: Projections using different projection algorithms of the same 808-dimensional dataset con-
sisting of ratings on 17 movies by 808 users.
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3. The SOM represents data vectors in a orderly fashion on a (usually) two-dimensional regular
grid and the reference vectors are associated with the nodes of the grid. That is, the SOM tries
to preserve the topology instead of the distance between data samples, whereas, for example,
Sammon’s mapping tries to preserve the metric with an emphasize for preserving the local distance
between data samples. The grid structure also discretizate the output space, whereas Sammon’s
mapping has continuous outputs.

4. It is not necessary to recompute the SOM for every new samples, because if the statistics can
be assumed stationary, the new sample can be mapped onto the closest old reference vector. In
Sammon’s mapping, for example, the mapping of all data samples is computed in an simultaneous
optimization process, meaning that, with new data samples a new optimal solution exists. There-
fore, no explicit mapping function is created since the projection must be recomputed for every
new data sample.

5. Sammon’s mapping can very easy converge to a local optimal solution, so in practice, the projection
most be recomputed several times with different initial configurations. The SOM algorithm is found
to be more robust to this if learning is started with a wide neighborhood function that gradually
decreases to its final form.

Different methods, like the SOM, K-means and various projection methods, all display properties of the
data set in slightly different ways, therefore, a useful approach could be to combine several of them.
In the paper [Flexer, 1997], K-means and Sammon’s projection is combined into a serial VQ-P method
and compared against the SOM. They report that their combined method outperforms the SOM as
a clustering and projection tool. However, it seems like their performance measure favors distance
preserving algorithms and the SOM is not intended for distance preserving, instead the SOM orders the
reference vectors on a lattice structure in such a way that local neighborhood sets in the projection are
preserved. In a study done by [Venna and Kaski, 2001] a new concept is defined: the trustworthiness of
the projection, meaning that if two data samples is closed to each other in output space, then they are
more likely to be near each other in the input space. The SOM is compared to other methods like the
PCA, non-metric MDS and Sammon’s mapping and are found to be especially good at this. It is also
shown that the SOM is good at preserving the original neighborhood set in the projection. Although
PCA and non-metric MDS is found to be better on this. For discrete data, neighborhoods of data vectors
is defined as sets consisting of the k closest data vectors, for relatively small k.

4.13 Visualizing the SOM

Different kinds of methods for visualizing data using the SOM and other VQ-P methods are discussed
in the paper [Vesanto, 1999]. Three goals of visualization is defined; to get an idea of the structure and
the shape of the data set, for example, if there is any clusters and outliers. Secondly, analysis of the
reference vectors in a greater detail, and third, examining new data with the map, i.e. the response from
the map has to be quantified and visualized.

As for the first goal, while projections give a rough idea of clusters in the data, to actually visualize
the clusters on the SOM, techniques based on distance matrices is commonly used. The distance matrix
can contain all distances between the nodes reference vectors in the lattice as well as their immediate
neighbors, like in the Unified distance matrix (U-matrix), as illustrated in [Figure 4.7(a)] or just a single
value for each node, representing either the minimum, maximum or average distance for the nodes to its
neighbors, as illustrated in [Figure 4.7(b)]. A related technique is to use colors, i.e, same color is assigned
to nodes that are similar, as illustrated in [Figure 4.7(c)].

The U-matrix can bee seen as several component planes stacked on top of each other. Each component
plane shows the values of a single vector component in all nodes of the map, hence, together they can
be seen as constituting the whole U-matrix. Component planes are commonly used in the analysis of
reference vectors since they can give information such as the spread of the values of a component or they
can also be used in correlation hunting, i.e. finding to component planes with similar patterns [Figure
4.8].

In the examination of new data, the response from the map can be as simple as just pointing out the
BMN for that data. Histograms can be used for multiple vectors. Often some form of accuracy is also
measured to give some information whether the sample is close to the mapped BMN or very far.
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(a) U-Matrix (b) Distance Matrix (c) Similarity Coloring

Figure 4.7: The U-matrix (a) is a graphic display frequently used to illustrate the clustering of the
reference vectors in the SOM, it represents the map as a regular grid of nodes where the distance
between adjacent node’s reference vectors is calculated and presented with a coloring scheme. A light
coloring between nodes signifies that the reference vectors are close to each other in the input space and
A dark coloring between the nodes corresponds to large distances and thus a gap between the reference
vectors in the input space. Dark areas can be thought of as clusters separators and light areas as clusters.
This is helpful when one tries to find clusters in the input data without having information if there is
any. (b) In the Distance Matrix each map node is proportional to the average distance to its neighbors.
(c) In the Similarity Coloring map nodes that are similar have the same color.

Figure 4.8: Component planes, useful for correlation hunting.

4.14 Properties of the SOM

Once the SOM algorithm has converged, the SOM computed by the algorithm displays important statis-
tical characteristics of the input data. The SOM can be seen as a nonlinear transformation φ that maps
the spatially continuous input space X onto the spatially discrete output space L, as depicted in [Figure
4.9] [Haykin, 1994]. This transformation, written as φ : X → L can be viewed as an abstraction of [Equa-
tion 4.5], finding of the BMN. The topology of the input and output space are defined respectively by the
metric relationship of vectors x ∈ X and the arrangement of a set of nodes of a regular two-dimensional
grid. If we consider this in a neurobiological context, the input space X may represent the coordinate
set of somatosensory receptors distributed densely over the entire body surface, then output space L will
represent the set of neurons located in the layer of the cortex which the somatosensory receptors are
confined.
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Figure 4.9: [Haykin, 1994] Illustration of a relationship between the SOM φ and a reference vector mc of
a BMN c. Given an input vector x, the SOM φ identifies a BMN c in the output space L. The reference
vector mc for node c can then be viewed as a pointer for that node into the input space X.

4.14.1 Approximation of the input space

The SOM φ, represented by the set of reference vectors {mi|i = 1, 2, . . . , N} in the output space L,
provides an approximation to the input space X.

This property comes from the fact that the SOM performs VQ, as discussed earlier, where the key
idea is to use a relatively small number of reference vectors to approximate the original vectors in input
space.

4.14.2 Topological ordering

The SOM φ computed by the SOM algorithm is topologically locally and globally ordered in the sense
that nodes that are close to each other on the grid represents similar data in the input space.

That is, when data samples are mapped to those nodes on the lattice that have the closest reference
vectors, nearby nodes will have similar data samples mapped onto them.

This property is a direct consequence of the updating process [Equation 4.7]. It forces the reference
vector mi of the BMN c to move toward the input vector x, and when used with a wide neighborhood
kernel in the beginning of the learning process that slowly decreases during training, a global ordering
is guaranteed (since it has the effect of moving the reference vectors mi of the closest nodes(s) i along
with the BMN c).

Illustration of the ordering principle implemented by the SOM

The difference between a locally and globally ordered SOM φ on one hand and a SOM φ that is only
locally ordered can be illustrated if we think of the SOM φ as an elastic net that is placed in input
space. (Such an illustration however requiers a special case, such as when both the input and output
space is two dimensional. Keep in mind that the input space is usually of a very high dimension and
that ordering is not well defined in higher dimensions, it is however useful to imagine something similar
occuring in higher dimensional cases.)

For a two-dimensional input space with the point distribution as shown in [Figure 4.10], four distinct
clusters can easily be detected by visual inspection, these are denoted in the figure by c1, c2, c3 and c4.
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Figure 4.10: Two-dimensional input space consisting of four distinct clusters denoted c1, c2, c3 and c4.

The output space consists of a regular two-dimensional grid structure of four nodes, where the cor-
responding reference vector corresponds to some coordinates in input space X[Figure 4.11].

Figure 4.11: Two-dimensional grid structure with four nodes (output space).

The goal of the SOM algorithm is to find suitable coordinates for the reference vectors such that
the collection of grid nodes follows (or approximates) the distribution of the data points in input space
in such a way that neighboring nodes are more alike than nodes farther apart. Two nodes are said to
be similar if they represent similar data points in input space. If this is true, then a grid is said to be
globally and locally ordered and is referred to as an topologically ordered SOM φ. In order to illustrate
this property of the SOM φ, we will look at a SOM φ that is locally ordered only and one that is both
locally and globally ordered.

In the first case, the SOM has been trained with a neighborhood size of zero, i.e. only the BMN
is updated for every data point, resulting in the grid depicted in [Figure 4.12(a)]. In the second case,
the SOM has been trained with a neighborhood function that monotonically decreasing over time, i.e.
more nodes are affected by the same data points in the beginning of the training than in the end of the
training of the SOM. The resulting grid is depicted in [Figure 4.12(b)]. Each node is labelled with the
cluster in input space that it represents.

(a) A locally ordered
SOM φ.

(b) A locally and globally
ordered SOM φ.

Figure 4.12: SOM with nodes labeled with the cluster in input space they represent.

As can be seen in [Figure 4.12(a)] and [Figure 4.12(b)], the nodes represent different clusters and the
effect of this can be detected if the labeled nodes in the figures are placed in input space while keeping
their connections between each other. This ”stretch” effect of the SOM φ illustrates clearly the ordering
property of the SOM psi, nearby nodes in the grid are also nearby in input space [Figure 4.13(b)]. This
is not the case with an SOM φ that is only locally ordered [Figure 4.13(a)].
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Figure 4.14: A nonlinear regression process of the ordered set of reference vectors. (a) shows the initial
state of the nodes in input space. (b) shows how the nodes have moved after a few iteration in their
attempts to following the data distribution and at the same arranging the nodes so they have the same
ordering as in the grid. (c) shows the converged SOM φ, i.e. the nodes are placed in areas with high
point density and the location of the nodes respective each other corresponds to the initial ordering of
the grid nodes.

(a) A locally ordered SOM φ
stretched out in input space.

(b) A locally and globally ordered
SOM φ stretched out in input space.

Figure 4.13: SOM arrays stretched out in input space.

To achieve both locally and global order, the neighborhood must be allowed to be wide in the
beginning so a rough global ordering can take place among the reference vectors and then by letting it
shrink with time, a local structure takes form. So, with topological order is meant a grid structure that
is ordered from the beginning (its nodes) and by arranging the associated reference vectors to the nodes
so that they also become globally and locally ordered in the grid, then we have the SOM φ.

The formation of the SOM φ can also be thought of as an nonlinear regression of the ordered set of
reference vectors into the input space, i.e. the reference vectors in [Figure 4.12(a)] forms a elastic grid
with the topology of a two-dimensional grid whose nodes have weights as coordinates in the input space
and that follows the distribution of the data samples in input space [Figure 4.14].

The overall aim of the algorithm may thus be stated as follows:
Approximate the input space X by reference vectors mi, in such a way that the SOM φ provides a

faithful representation of important features that characterize the input vectors x ∈ X.

4.14.3 Density matching

The SOM φ reflects variations in the statistics of the input distribution: the density of reference vectors
of an ordered map will reflect the density of the data samples in input space. In areas with high point
density, the reference vectors will be close to each other, and in the empty space between areas with high
point density, they will be more sparse.

As a general rule, the SOM φ computed by the SOM algorithm tends to over represent regions
of low input density and under representing regions of high input density. One way of improving the
density-matching property of the SOM algorithm is to add heuristics to the algorithm, which force the
distribution computed by the algorithm to match the input distribution.
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The density match is also different for nodes at the border of the grid compared to center nodes at
the grid, since the neighborhood to the border nodes are not symmetric. This effect is usually referred
to as the border effect and different ways of eliminate these are given in [Kohonen, 2001]. For example, if
the batch-map is used, border effects can be eliminated totally if after a couple of batch-map iterations
the neighborhood set Ni is replaced by {i}, i.e. having a couple of simple K-means iterations at the end.

4.15 Theoretical aspects of the SOM algorithm

A few words has to be mentioned about the theoretical aspect of the SOM algorithm. How can we
be sure that the SOM algorithm converges into a ordered stable state? Frankly, we don’t, at least in
the multi-dimensional case. It is just a well observed phenomena that the SOM algorithm leads to an
organized representation of the input space, even if started from an initial complete disorder. Lets quote
Kohonen himself regarding this matter:

”Perhaps the SOM algorithm belongs to the class of ”ill posed” problems, but so are many
important problems in mathematics. In practice people have applied many methods long before
any mathematical theory existed for them and even if none existed at all. Think about walking:
theoretically we know that we could not walk at all unless there existed gravity and friction,....
People and animals, however, have always walked without knowing this theory.”

It is actually a bit surprisingly that the SOM algorithm has shown such resistant against a complete
mathematical study if one consider that the algorithm itself is easy to write down and simulate and that
the practical properties of the SOM are clear and easy to observe. And still, no proof for its theoretically
properties exists in the general case. These questions are treated by the mathematical expert Marie
Cottrell [Cottrell et al., 1998] in a review paper regarding different proofs of convergence for the SOM
algorithm under special circumstances, we quote:

”Even if the properties of the SOM algorithm can be easily reproduced by simulations,
and despite all the efforts, the Kohonen algorithm is surprisingly resistant to a complete
mathematical study. As far as we know, the only case where a complete analysis has been
achieved is the one-dimensional case (the input space has dimension 1) for a linear network
(the units are disposed along a one-dimensional array).”

The study of the SOM algorithm in the one dimensional case is nearly complete, all that’s left is to
find a convenient decreasing rate to ensure the ordering[Cottrell et al., 1998]. The first proof of both
convergence and ordering properties in the one dimensional case was presented by Cottrel and Forth in
1987.

Two obstacles that prevents a thorough study of the convergence of the SOM algorithm in higher
dimensions are [Kohonen, 2001]:

1. How to define ordering in higher dimensions? In the one-dimensional case, ordering of the SOM
can easy be defined, but for higher dimensions, no accepted mathematical definition for the ordered
states of multi dimensional SOMs seems to exists.

2. How to define a objective function for the SOM in the high-dimensional case? Only in the special
case, when the data set is discrete and the neighborhood kernel is fixed, can a potential function
be found in the multi-dimensional case. Ritter proved the convergence in this special case with the
use of a gradient-descent method. He then later applied this method to the well-known traveling
salesman problem, where the probability density function of input is discrete-valued.

Details and references on actual results in the effort of reaching a solid mathematical theory about
the SOM algorithm can be found in [Cottrell et al., 1998], as well as in [Kohonen, 2001].
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4.16 SOM Toolbox for Matlab

SOM Toolbox3 [Vesanto et al., 2000] is an implementation of the SOM and its visualization in MAT-
LAB4 (MATrix LABoratory). The Toolbox can be used to initialize, train and visualize the SOM. It also
provides methods for pre-processing of data, analysis of data and the properties of the SOM. Two SOM
algorithms are implemented, the original SOM algorithm and the batch-map. Although we have imple-
mented our own SOM algorithm, the SOM Toolbox provides functions which we have not implemented,
such as PCA and Sammon’s mapping for analysis of data and some visualization methods.

4.17 SOM based applications

The SOM algorithm was developed in the first place for the visualization of nonlinear relations of mul-
tidimensional data. However, the properties of the SOM is an interesting tool for two distinct classes of
applications:

• Simulators used for the purpose of understanding and modeling of computational maps in the
brain.

• Practical applications such as exploratory data analysis, pattern recognition, speech analysis, robotics,
industrial and medical diagnostics, etc.

A complete guide to the extensive SOM literature and an exhaustive listing of detailed application can be
found in [Kohonen, 2001]. The first application area of the SOM was speech recognition (speech-to-text
transformation). This application was called a ’neural’ phonetic typewriter and was developed by Koho-
nen himself [Kohonen, 1988] . Another widely known application with Kohonen involved are WEBSOM5

[Kohonen et al., 2000], which is used for content based organization of large document collections and
document retrieval. The user interface of the WEBSOM application will be discussed in part III.

4.18 Applications of the SOM in recommender systems

This section contains short descriptions of work related in one way or another to ours, in the context of
using the SOM in recommender systems.

CF using SOM and ART2 networks In [Graef and Schaefer, 2001] they describe two model based
approaches to collaborative filtering using SOMs and ART2 networks. They investigate how well
the two models performs regarding response time, quality of predictions and adaptively. Their
approach to use the SOM algorithm is to cluster users into similar nodes on the grid based on their
similarities in rating movies. For this, the EachMovie6 dataset that contains 2811983 ratings on
a scale from 1 to 5 for 1628 movies by 72916 users was used. From this, they randomly selected
2000 users with a minimum of 80 ratings. For their experiments they used a SOM of the size 10x10
nodes. To generate a recommendation for a user, his user-profile is compared to each reference
vector and the closest reference vectors is chosen for the recommendation process. This reference
vector is then compared with the user and recommendations are made for unrated items in the
user profile, i.e. the predicted value is the reference vectors value for the particular movie. To
measure the quality of the predictions, 30 ratings was randomly excluded from each user and then
one, three, five and 30 recommendations was computed and compared to the excluded ratings for
each user. Their test results shows that the SOM made correct recommendations in 45% of the

3Can be downloaded at http://www.cis.hut.fi/projects/somtoolbox/
4MATLAB is a widely used programming environment for technical computing. The matrix is the main data structure

used in MATLAB, so it is a very efficient tool for performing matrix calculations. MATLAB is developed by MathWorks
Inc. and can be found at http://www.mathworks.com/

5WEBSOM can be found at http://websom.hut.fi/websom/
6Digital Equipment Corporation’s Systems Research Center (SRC) originally developed EachMovie in order to gain

experience with a collaborative filtering algorithm. EachMovie had been operated as a free public service for 18 months
between the years 1995 and 1997. In September 1997 the EachMovie service was terminated. The dataset was then stripped
of identifying data and made available so that collaborative filtering researchers could use the data to test their algorithms.
The EachMovie Dataset remained available until October 2004 when it was finally retired.
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cases for one movie and was correct in 30% of the cases when it had to make 30 recommendations.
Compared to their implementation of a collaborative filtering algorithm and the ART2 network,
the SOM performed worse. Response time is measured in the cases when the total number of users
is 400,1200 and 2000. Not surprisingly, the response time increased with the number of users for the
memory based collaborative filtering algorithm, but for both the SOM and the ART2 network, no
significant difference can be noted. This has to do with the fact, that the SOM only has to do 100
comparisons, no matter how many users there are, as in contrast to the memory based collaborative
filtering algorithm that has to make as many comparisons as there are users. Adaptively means
the SOMs ability to adapt to new users without having to re-learn the whole SOM. The SOM
clearly outperformed the ART2 network on this, no distinct difference could be detected between
the number of correct recommendations made by an updated SOM and a re-learned SOM.

Hybrid recommender system combining CF with SOM A hybrid recommender system that com-
bines CF with the SOM is presented in [Lee et al., 2002]. Their approach is to use the SOM algo-
rithm as a cluster algorithm in which the clusters are formed according to the users demographic
data (sex and age) and preferences for different movie genres as action, drama, comedy, fiction
and thriller. the idea is then to apply collaborative filtering on the cluster to which the active
user belongs. They claim that their solution is comparable with the collaborative filtering algo-
rithm introduced by GroupLens [Resnick et al., 1994] based on the computed mean absolute error.
However the data set they uses consists of only 174 users and 53 movies and no characteristics is
presented for this unknown data set. Also, coverage is not reported at all.

CBR-CF with SOM as a clustering algorithm In [Roh et al., 2003] a cluster-indexing case based
reasoning (CBR) model for collaborative filtering recommendations are described. Their approach
is to use the SOM algorithm as a clustering algorithm and then use the reference vectors as indexes
for where similar users (or cases in CBR terminology) can be found in the case-base reasoning
process. Clusters are formed according to the users ratings on movies, the well-known MovieLens
data set is used, however, they only uses a fraction of the data set, a dense rating matrix with 251
users and 33 movies are used for evaluation. PCA has been used for a pre-step analyzing of the
data set and from their experiments, the size of the grid is set to four nodes (clusters). Prediction
for the active user is done by finding the active users closest reference vector and then applying
collaborative filtering with the users indexed by the same reference vector. Their studies show
comparable results compared to collaborative filtering techniques based on the reported normalized
mean absolute error.

Music artist reviews SOM A content-based approach is taken in [Vembu and Baumann, 2004], very
much similar to earlier studies done by the authors of this thesis [Gabrielsson and Gabrielsson, 2004].
Their idea is to use music artist reviews taken from Amazon web site and extract words from the
reviews to build artist-profiles. The usual techniques found in text-retrieval is used to form these
artist-profiles; vector space model and tf-idf weighting schema. They also hand-picked 324 words
that they thought to be of extra importance that was given extra weight in the artist-profiles. The
dimension of the artist-profile was reduced to 3313 from original 36708 by excluding words that
was present in less than 5% and more than 90% of the artist reviews.

The SOM algorithm was then used to cluster artist-profiles represented as bag-of-words. They
implemented a SOM of size 7x7 nodes using the SOM Toolbox for 398 artists. Evaluation was
made by comparing their SOM against a web-based music recommendation engine. Each BMN
contains artists similar to each other based on artist reviews and the web-based engine recommends
artists similar to a specific artist, but from a much larger data set and with a completely different
approach. The top 10 list generated by the web-engine for a specific artist was compared to the
BMN for the same artist. Observations was made that if they included the artist top 3 or 5 BMN,
the overlap between the top 10 list and the artists neighbourhood increased. Which of course is by
the virtue of the map’s self-organizing property, neighbouring nodes represents similar data.
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Chapter 5

Implementation and evaluation of
SOM based recommendation
techniques

5.1 SOM implementation

We implemented a basic SOM based on the (Original) Incremental SOM Algorithm as described by
Kohonen in [Kohonen, 2001] which has been rigorously introduced and described in the previous chapters.

We make use of a set of N sparse data vectors, all vectors have the same dimensionality but will not
have values for all dimensions. During training the dimensions in which a data vector misses values will
be ignored, in the distance calculation carried out when finding the BMN for a data vector missing values
are assumed to contribute 0 to the distance and when updating the reference vector only the dimensions
in which the data vector has values are updated.

Alternative methods for handling missing values were tested, such as using default values for missing
values during the distance and/or updating. Positive results could be obtained with default values,
however we are still unsure about the validity of using default values. It seems that sparsity of data and
insertion of default values will result in e.g. the distance calculations being dominated by the default
values, hence we chose to not use default values for our implementation in the end.

The SOM algorithm will form a projection of high dimensional data manifolds onto a regular array.
The elements of the array are as previously mentioned referred to as nodes. The regular array has a
rectangular lattice structure (nodes are arranged in rectangular patterns) and a sheet shape (nodes on
the edges of the array do not ”wrap around” to the ”other side”). The nodes of the array are referred to
using their index (i, j) where (0, 0) is always the top left node and (rows− 1, columns− 1) the bottom
rightmost node. A Euclidean distance measure is used to determine distances between pairs of nodes in
the array. We will henceforth refer more generally to the regular array as a ”map”. This terminology
is appropriate both as the visualization of data on the grid looks like a map, and the SOM itself is a
mapping defined by the regular array and the reference vectors associated with the elements of the array.

With each node a reference vector is associated and of the same dimensionality as the vectors in V .
The number of rows and columns in a map M is accessed using the notation M.rows and M.columns
respectively. The reference vector for a node in the map is retrieved using the index of the node, e.g.
M0,0 specifies the reference vector for the top-left node in the map. A element i ∈M is an index tuple,
e.g. i = (0, 0) for the top left node, which can also be used to specify a reference vector in the map using
the notation Mi, in which case a specific dimension of the reference vector can be specified using the
notation Mi(d).

We initialize the reference vectors for each node in the array by picking random samples from the
training vectors. While this is not an optimal initialization method, it seems to work well enough for us.

The training of a SOM requires specifying the parameters listed in [Table 5.1] the parameters include
the size of the map and the settings for the rough order and fine tuning phase of training the SOM.
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Map
rows Number of rows in the array.
columns Number of columns in the array.
Rough ordering phase
RoughT Number of training iterations.
Roughα0 Initial learning rate for training.
Roughσ0 Initial neighborhood radius for training.
RoughσT Final neighborhood radius for training.
Fine tuning phase
FineT Number of training iterations.
Fineα0 Initial learning rate for training.
Fineσ0 Initial neighborhood radius for training.
FineσT Final neighborhood radius for training.

Table 5.1: Parameters required for the training of a SOM using our implementation of the SOM algo-
rithm. Assume that V is a set containing all vectors.

som(V, rows, columns)
1 M → create-map(rows, columns)
2 sample-initialization(M,V, rows, columns)
3 som-algorithm(M,V,RoughT , Roughα0, Roughσ0, RoughσT )
4 som-algorithm(M,V, F ineT , F ineα0, F ineσ0, F ineσT )
5 Return M

The function create-map on line 1 tells us that a map structure as previously described is created and
consists of the specified number of rows and columns.

sample-initialization(M,V,rows,columns)
1 For row ← 0 To rows− 1
2 For column← 0 To columns− 1
3 Mrow,column ← random-vector(V )

random-vector(V)
1 Return V (rand(1, |V |))

The sample-initialization method simply picks a random vector from the set V repeatedly using the
random-vector method as shown. The random selection means that some data vectors might be used for
multiple reference vectors as initialization, while this might seem problematic, i.e. how will a BMN be
determined if multiple reference vectors are equally ”close” to a sample during training, this is however
not a problem as we will simply pick the first found BMN as closest and adjust it, no winner takes all
situation will (or is likely to) arise as we also adjust the neighboring node’s reference vectors, in the end
the adjustments will even out.
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som-algorithm(M, V, T, α0, σ0, σT )
1 For t← 0 To T − 1
2 x← random-vector(V )
3 c← find-bmn(M,x)
4 α← inverse-learning-rate(α0, T, t)
5 σ ← linear-neighborhood-radius(σ0, σT , T, t)
6 Foreach i ∈M

7 activation← gaussian-neighborhood(M, c, i, α, σ)
8 If activation 6= 0 Then
9 Foreach dimension d that sample x has a value for
10 Mi(d)←Mi(d) + activation× (x(d)−Mi(d))

We chose to implement a stochastic SOM algorithm. Thus one random data (sample) vector at the time
will be selected from the training data and shown to the SOM whereby the currently best matching node
(BMN) for the sample is directly found, and the reference vector for the BMN, and the reference vectors
for nodes in its neighborhood, are directly adjusted to become more similar to the sample. Since this is
a incremental algorithm, time is equivalent to the current iteration number, starting from 0.

find-bmn(M,x)
1 bmn← unknown

2 d← inf
3 For row ← 0 To rows− 1
4 For column← 0 To columns− 1
5 If euclidean-distance(x, M(row, column)) < d Then
6 bmn← (row, column)
7 d← euclidean-distance(sample,M(row, column))
8 Return bmn

The BMN for a sample data vector is found by computing the Euclidean distance between the sample
and each node’s reference vector, the node which’s reference vector is nearest the sample is chosen as
BMN.

euclidean-distance(x,m)
1 d← 0
2 Foreach dimension d that sample x has a value for
3 d← (x(d)−m(d))2

4 Return d

The euclidean distance calculation as already mentioned and motivated ignores dimensions in which the
sample x has no values.

inverse-learning-rate(α0,T,t)
1 b← T/(100− 1)
2 a← b× α0

3 Return a/(b + t)

We used an inverse of time learning rate function which decreases inversely with time towards zero (but
does not become zero, which would cause a division by zero error, it approaches roughly a hundredth of
the initial learning rate).
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linear-neighborhood-radius(T, σ0, σT , t)
1 Return T + t× (σ0 − σT )/(T − 1)

We used a linear neighborhood radius which decreases linearly from the initial neighborhood radius down
to 1.

gaussian-neighborhood(M, c, i, α, σ)
1 d← node-distance(c, i)

2 Return α× e
d2

2×σ2

We use a gaussian function to implement the neighborhood function, i.e. a guassian neighborhood func-
tion. Neighboring nodes i within the radius σ at time t of the BMN c have a higher activation than
nodes outside the radius σ. The learning rate α decides how much can at most be learned at any time
t, i.e. the maximum activation.

node-distance(c, i)

1 Return
√

(c.row − i.row)2 + (c.column− i.column)2

The distance between the BMN c and the neighboring node i is calculated using the node-distance func-
tion, which uses the row and column indices of the nodes to determine the distance between the node’s
index vectors on the regular array. Please note that this does not at all involve using the node’s reference
vectors, it only depends on the structure of the map.)

5.2 SOM based recommendation techniques

As in Part I recommendation techniques will be described using simple pseudo code that outlines how
available profile models are used to generate recommendations.

For all the described techniques the common assumption is made that all the rating data uses the same
rating scale [Rmin, Rmax]. It is always assumed that there is a set U = {u1, u2, . . . } and I = {i1, i2, . . . }
consisting of all users and items respectively for which necessary profile models are available. The profile
models previously presented in Part I will again be used.

The techniques that generate predictions outline how to predict ratings on all available items for
all available users on items the users have not rated, this gives a better idea of the complexity of the
algorithm than simply showing how to predict for the active user on the active item. The techniques do
not outline nor discuss how to introduce new users or items into the system.

The techniques in addition to assuming the presence of required profile models also assume that
necessary constants have been specified.

5.2.1 SOM User based Collaborative Filtering (SOMUCF)

Recommendation technique based on the CF approach. Makes use of the neighborhood preservation of
data in the SOM to retrieve similar users for the active user. The active user’s neighborhood is simply
all other users that have the same BMN as the active user, and users having neighboring nodes as BMN.
The constant NR (Neighborhood Radius) specifies the radius within which neighboring nodes of the
BMN can be found in the SOM’s map. Otherwise the technique is the same as the UCF technique.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir. Let M represent a trained SOM that has been trained on a set of item rating models.
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somucf(U,I,M)
1 Foreach u← U

2 bmn← find-bmn(M,ur)
3 N ← neighborhood(bmn, M, U, NR)
4 Pu ← �
5 Foreach i ∈ I

6 If rui /∈ ur Then
7 p← predict(u, i, N)
8 next(Pu)← (i, p)
9 Return P

neighborhood(c,M,U,NR)
1 NS ← �
2 Foreach i ∈M

3 If node-distance(c, i) <= NR Then
4 next(NS)← i

5 N ← �
6 Foreach u ∈ U

7 i← find-bmn(M,ur)
8 If i ∈ NS Then
9 d← node-distance(c, i)
10 next(N)← (u, 1/d)
11 Return N

The function neighborhood(node,M,U,NR) determines which of the nodes in M lie within the neigh-
borhood radius NR of the active user’s BMN and returns the set of users in the neighborhood as well
as their similarity with the active user.

In order to determine which nodes lie within the neighborhood radius NR of the BMN we use the
node-distance function previously described. An alternative would have been to consider the distance
between the node’s model vectors. We did attempt this, however we didn’t seem to get any better results
doing this, probably because as our u-matrices indicate we don’t have any clear clustering structure
motivating its usage.

Finally the active user’s neighbors are considered to be all the users u ∈ U in the BMN and its
neighboring nodes. Neighbors having the same BMN as the active user are considered to be perfectly
similar to the active user. Neighbors having a neighboring node as BMN are assigned a similarity based
on their BMN’s distance to the active user’s BMN, we chose to implement this as a simple 1/d formula,
where d is the distance between the active user’s BMN and the neighbor’s BMN. Note that the shown
neighborhood code is not optimal, only descriptive.

5.2.2 SOM Item based Collaborative Filtering (SOMICF)

The recommendation technique is based on the CF approach if the item SOM is based on rating data,
however if it is based on attribute data it is based on the CBF approach. The technique is the same
in both cases however, the difference lies in how the SOM is created which is beyond the scope of the
technique.

Makes use of the neighborhood preservation of data in the SOM to retrieve similar items for the active
item. The active item’s neighborhood is simply all other items that have the same BMN as the active
item, and items having neighboring nodes as BMN. The constant NR (Neighborhood Radius) specifies
the radius within which neighboring nodes of the BMN can be found in the SOM’s map. Otherwise the
technique is the same as the ICF technique.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir. Let M represent a trained SOM that has been trained on a set of user rating models.
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somicf(U,I,M)
1 Foreach i ∈ I

2 bmn← find-bmn(M, ir)
3 N ← neighborhood(bmn, M, I,NR)
4 Foreach u ∈ U

5 Pu ← �
6 Foreach i ∈ I

7 If rui /∈ ur Then
8 p← predict(u, i, N)
9 next(Pu)← (i, p)
10 Return P

5.2.3 Item SOM User based Collaborative Filtering (ISOMUCF)

The recommendation technique is based on the CF approach if the item SOM is based on rating data,
however if the item SOM is based on attribute data it is based on a hybrid filtering approach. The
technique is the same in both cases however, the difference lies in how the SOM is created.

User similarities are calculated only over items similar to the active item. Prediction algorithm too is
only provided with user rating models containing ratings on items similar to the active item, this means
that for example user mean ratings will only be over items similar to the active item. It is conceivable
that for certain types of movies the rating behavior of users varies, hence making it motivated to attempt
to capture this when predicting. Makes use of the neighborhood preservation of data in the SOM to
retrieve similar items for the active item. The active item’s neighborhood is simply all other items that
have the same BMN as the active item, and items having neighboring nodes as BMN. The constant NR
(Neighborhood Radius) specifies the radius within which neighboring nodes of the BMN can be found
in the SOM’s map.

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir. Let M represent a trained SOM that has been trained on a set of item rating models.

isomucf(U,I,M)
1 RM ← �
2 Foreach node ∈M

3 N ← neighborhood(bmn, M, I,NR)
4 Foreach (i, s) ∈ N

5 Foreach rui ∈ ir
6 next(RMnode,u) ∈ rui

7 Foreach u ∈ U

8 Pu ← �
9 Foreach i ∈ I

10 If rui /∈ ur Then
11 BMN ← find-bmn(M, ir)
12 N ← �
13 Foreach n ∈ U

14 next(N)← similarity(RMBMN,u, RMBMN,n)
15 sort(N) in descending order of similarity
16 p← predict(u, i, N)
17 next(Pu)← (i, p)
18 Return P

Line 6 creates the sets of ratings denoted RMnode,u, which are user rating sets consisting only of ratings
on items within the neighborhood of the node in question. Thus during prediction we can given an
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active item’s BMN easily retrieve rating models for users consisting only of ratings on items similar to
the active item.

An alternative implementation of this technique is to completely skip the model building step on lines
1-6, which is time consuming and memory intensive. Instead having selected an active user and an active
item, the active user’s rating model is reduced to only contain ratings on items within the active item’s
neighborhood. This means that instead item neighborhoods should be modeled, which is less memory
requiring. Neighbors models are not modified, instead similarity is computed directly with the active
user’s reduced rating model, which is in most cases such as with Pearson similarity exactly the same
thing as had the neighbors model also been reduced. However, when predicting e.g. using Weighted
Deviation From Mean, a difference will arise because we are still working with the neighbors complete
rating models, their mean will not be over items similar to the active item but over all their items. We
implemented and evaluated both these methods, however results appeared to be almost similar for both
approaches, since the technique as it is presented here has a more theoretical sound motivation we choose
to only present its results.

5.2.4 Model Predicting SOM User based Collaborative Filtering (MPSO-
MUCF)

Recommendation technique based on the CF approach. The value specified for each item by the model
vector of the BMN for the active user is used as predictions for all items for the active user.

Assume that each user u ∈ U has a user rating model ur. Let M represent a trained SOM that has
been trained on a set of user rating models.

mpsomucf(U,I,M)
1 Foreach u ∈ U

2 bmn← find-bmn(M,ur)
3 Pu ← �
4 Foreach i ∈ I

5 If rui /∈ ur Then
6 p←Mbmn(i)
7 next(Pu)← (i, p)
8 Return P

5.2.5 SOM Goodness Collaborative Filtering (SOMGOODNESSCF)

Recommendation technique combines the SOMUCF and SOMICF technique and uses the average of the
two techniques predictions as a goodness prediction. Note that if the item SOM used by the SOMICF
technique is based on attributes and not ratings, then this combined technique will be based on the HF
approach. The SOMUCF based predictions are considered to have a possible element of serendipity,
while the SOMICF based predictions to be more safe. By taking into account these two predictions a
final goodness prediction can be made, the simplest choice of taking the average of the two prediction
was made in this technique. Depending on whether

Assume that each user u ∈ U has a user rating model ur, and that each item i ∈ I has a item rating
model ir. Let MU represent a trained SOM that has been trained on a set of user rating models, and
let MI represent a trained SOM that has been trained on a set of item rating models.
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somgoodnesscf(U,I,MU,MI)
1 Foreach u ∈ U

2 Pu ← �
3 Foreach i ∈ I

4 If rui /∈ ur Then
5 psafe ← SOMUCF based prediction on i for u

6 pserendipity ← SOMICF based prediction on i for u

7 If pserendipity 6= Failed AND psafe = Failed Then
8 p← pserendipity

9 Elseif pserendipity = Failed AND psafe 6= Failed Then
10 p← psafe

11 Elseif pserendipity 6= Failed AND psafe 6= Failed Then
12 p← (psafe + pserendipity)/2
13 Else
14 p← Failed

15 next(Pu)← (i, p)
16 Return P

5.2.6 Top-N SOM User based Collaborative Filtering (TOPNSOMUCF)

Recommendation technique makes predictions for users using the SOMUCF recommendation technique
and creates Top-N ranking lists by sorting the predictions for each user in descending order of prediction
and recommending the Top-N items with highest predictions.

5.2.7 Top-N SOM Item based Collaborative Filtering (TOPNSOMICF)

Recommendation technique makes predictions for users using the SOMICF recommendation technique
and creates Top-N ranking lists by sorting the predictions for each user in descending order of prediction
and recommending the Top-N items with highest predictions.

5.2.8 Top-N SOM Goodness Collaborative Filtering (TOPNSOMGOOD-
NESSCF)

Recommendation technique makes predictions for users using the SOMGOODNESSCF/CBF recommen-
dation technique and creates Top-N ranking lists by sorting the predictions for each user in descending
order of prediction and recommending the Top-N items with highest predictions.

5.3 Evaluation data

The rating and attribute data sets presented previously in Part II were used again, this time split over
users into a 80% training data set and a 20% test data set. The training data set was used to create a
SOM, the user models in the training data set and the item models in the training set were respectively
used to create a user SOM and a item SOM. Thus for i.e. the DS dataset the same 80% training set
was used to create a item SOM as well as a user SOM, the idea being to use evaluation datasets created
similarly to those used in Part I. However we must emphasize that we chose for simplicity (on behalf of
reliability of validation results, which we however still consider representative of what can be obtained
with the recommendation algorithms in question) to make simple Hold Out evaluations instead of K-Fold
Cross Validations.

This time we decided to use the IMDb keyword lists, which provides for each movie a set of descriptive
IMDb user specified keywords. The keyword lists were preprocessed to only contain keywords used for
at least 5 different movies and at most for 50 different movies, it was also required that each movie had
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M ap Rough ordering Fine tuning SOM Evaluation
SOM Rows Columns T α σ0 σT T α σ0 σT Runtime AQE TE
IMDBK 50 50 1000 0.9 20 3 100000 0.2 3 1 16min 1.653 0.470
DS2-ITEM 20 20 1000 0.9 20 3 200000 0.2 3 1 13min 3.803 0.043
DS2-USER 20 20 1000 0.9 20 3 200000 0.2 3 1 13min 3.981 0.054
DS-ITEM 20 20 1000 0.9 20 3 200000 0.2 3 1 5min 2.033 0.307
DS-USER 20 20 1000 0.9 20 3 200000 0.2 3 1 16min 4.556 0.047
CML-ITEM 20 20 1000 0.9 20 3 200000 0.2 3 1 16min 3.903 0.075
CML-USER 20 20 1000 0.9 20 3 200000 0.2 3 1 21min 5.792 0.002

Table 5.2: SOMs created based on 80% training datasets, except IMDBK which was created on a
preprocessed set of IMDb movie keywords. E.g. DS2-ITEM refers to a 80% training dataset based on
the DS2 rating dataset split over users which was used to create an item SOM, i.e. the item rating models
in the training dataset were used when training the SOM. The Average Quantization Error (AQE) and
the Topographic Error (TE) is also shown for each SOM based on the respective training data. The
errors are overall quite low indicating a possibly good SOM.

at least 5 keywords. See [Table 5.2] for further information about the SOM’s generated based on the
evaluation datasets.

The DS2 dataset when used to create an item SOM has the advantage of containing few items that
have been rated by only a few users, the DS dataset on the other hand contains some items that have
been rated by very few users and because of this we’re likely to see some kind of neighborhood formation
based only on the fact the item’s share the fact that few users have rated them.

The IMDBK dataset contains only 609 of the items in the CML dataset, the SOM is also very large,
which must be taken into account when interpreting the evaluation results (especially the coverage).

5.4 Evaluation results

The recommendation techniques were evaluated for the evaluation datasets using various combinations
of evaluation protocol and evaluation metrics.

For the recommendation techniques we select where necessary an appropriate combination of simi-
larity and prediction algorithm, we use a decent set of settings giving good results, not necessarily the
absolute best results, but near enough to be interesting to list.

We will describe briefly for each recommendation technique the setup of the evaluation, such that
the evaluation can easily be understood and reproduced.

5.4.1 Accuracy of predictions

The result tables use the following abbreviations for the column headings: ET = Evaluation time (in
minutes), Us = Usuccessful, Uf = Ufailed, Ps = Psuccessful, Pf = Pfailed, Cov = Coverage, Corr =
Correctness.

For the settings name the name of the dataset from which prediction evaluation data was generated
is always displayed first, i.e. DS, DS2 or CML. Usually the SOM that is needed by recommendation
technique being evaluated is based on the same evaluation dataset. However the settings named CML-
IMDBK use the IMDb keyword SOM, the prediction evaluation is still based on a evaluation dataset
based on the CML dataset. Each table of evaluation results is followed by description of algorithms and
settings used for each evaluation.

Where applicable the value of the neighborhood radius NR is indicated in the settings name, e.g.
DS-NR3 means a neighborhood radius of 3 (NR=3) was used for that setting.

In all cases a Hold Out evaluation was performed using rating data split over users such that 80%
of each users ratings are used for training data and 20% of each users ratings used as test data. Note
that the same Hold Out evaluation data was used for each evaluation based on the same rating dataset,
similarly the same SOM as previously described was used each time.
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SOMUCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS-NR0 0 1578 423 9510 15683 37.7% 42.4% 0.769 0.743 0.775 0.749 0.192 1.062 1.030

DS-NR3 0 1997 4 22679 2514 90.0% 44.9% 0.715 0.679 0.739 0.705 0.179 0.897 0.947

DS2-NR0 0 1606 395 8996 12275 42.3% 43.2% 0.771 0.741 0.802 0.776 0.193 1.106 1.051

DS2-NR3 0 1991 10 19949 1322 93.8% 45.0% 0.715 0.678 0.755 0.721 0.179 0.899 0.948

CML-
NR0

0 781 162 6860 12711 35.1% 35.7% 0.917 0.895 0.957 0.932 0.229 1.433 1.197

CML-
NR3

0 943 0 18323 1248 93.6% 39.1% 0.813 0.780 0.839 0.810 0.203 1.099 1.04

Table 5.3: Evaluation results for the SOMUCF technique. The Weighted Deviation From Mean predic-
tion algorithm (with NSmin = 0, NSmax = 0) was used.

SOMICF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS-NR0 0 1815 186 14829 10364 58.9% 46.2% 0.704 0.685 0.706 0.695 0.176 0.999 0.999

DS-NR4 0 2001 0 24327 866 96.6% 46.8% 0.689 0.648 0.709 0.667 0.172 0.851 0.923

DS2-NR0 0 1293 708 6464 14807 30.4% 46.6% 0.694 0.683 0.668 0.663 0.173 1.037 1.018

DS2-NR4 0 1996 5 20654 617 97.1% 47.1% 0.695 0.656 0.728 0.697 0.174 0.894 0.945

CML-
NR0

0 807 136 8850 10721 45.2% 38.9% 0.840 0.835 0.865 0.866 0.210 1.334 1.155

CML-
NR4

0 943 0 19283 288 98.5% 41.9% 0.753 0.716 0.791 0.757 0.188 0.948 0.974

CML-
IMDBK

1 544 399 2583 16988 13.2% 34.5% 0.954 0.950 0.978 0.979 0.239 1.671 1.292

CML-
IMDBK-
NR4

1 876 67 10230 9341 52.3% 34.7% 0.912 0.889 0.980 0.964 0.228 1.400 1.183

CML-
IMDBK-
NR8

1 924 19 12128 7443 62.0% 35.7% 0.862 0.834 0.927 0.906 0.216 1.209 1.100

Table 5.4: Evaluation results for the SOMICF technique. The Weighted Sum prediction algorithm (with
NSmin = 0, NSmax = 0) was used.
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Settings NR ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS-NR4 4 0 2001 0 24327 866 96.6% 46.0% 0.696 0.657 0.715 0.679 0.174 0.859 0.927

DS2-NR4 4 0 1996 5 20654 617 97.1% 47.0% 0.693 0.657 0.726 0.694 0.173 0.886 0.941

CML-
NR4

4 0 943 0 19283 288 98.5% 42.3% 0.748 0.709 0.785 0.749 0.187 0.934 0.966

CML-
IMDBK-
NR4

4 1 876 67 10230 9341 52.3% 34.7% 0.903 0.885 0.972 0.961 0.226 1.376 1.173

CML-
IMDBK-
NR8

8 1 924 19 12128 7443 62.0% 36.1% 0.855 0.825 0.915 0.884 0.214 1.188 1.090

Table 5.5: Evaluation results for the SOMICF technique. The Average Rating prediction algorithm
(with NSmin = 0, NSmax = 0) was used. All provided neighbors are used as predictors, as such the
Neighborhood Radius NR is the parameter that decides how many items similar to the active that a
prediction can be based on.

ISOMUCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS-NR0 2 975 1026 5540 19653 22.0% 43.9% 0.710 0.677 0.697 0.670 0.177 0.853 0.924

DS-NR5 8 1984 17 22978 2215 91.2% 47.8% 0.673 0.633 0.700 0.662 0.168 0.810 0.900

DS2-NR0 0 347 1654 1012 20259 4.8% 45.0% 0.729 0.682 0.671 0.607 0.182 0.901 0.949

DS2-NR5 5 1934 67 18996 2275 89.3% 47.6% 0.677 0.635 0.715 0.681 0.169 0.822 0.907

CML-
NR0

0 530 413 2985 16586 15.3% 37.4% 0.834 0.814 0.836 0.823 0.208 1.145 1.070

CML-
NR5

2 943 0 18902 669 96.6% 43.1% 0.728 0.690 0.756 0.724 0.182 0.880 0.938

CML-
IMDBK

1 276 667 690 18881 3.5% 36.7% 0.916 0.868 0.914 0.861 0.229 1.335 1.156

CML-
IMDBK-
NR5

2 772 171 8860 10711 45.3% 39.1% 0.792 0.767 0.841 0.818 0.198 1.039 1.019

CML-
IMDBK-
NR8

67 875 68 10889 8682 55.6% 41.1% 0.766 0.732 0.822 0.791 0.192 0.978 0.989

Table 5.6: Evaluation results for the ISOMUCF technique. The Pearson similarity algorithm (with
OT = 2, ST = 30) and the Weighted Deviation From Mean prediction algorithm (with NSmin = 1,
NSmax = 30) was used.

MPSOMUCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 0 2001 0 24946 247 99.0% 41.8% 0.816 0.777 0.847 0.811 0.204 1.206 1.098

DS2 0 2001 0 21271 0 100.0% 43.9% 0.758 0.718 0.803 0.765 0.190 1.029 1.014

CML 0 943 0 19545 26 99.9% 38.3% 0.814 0.784 0.837 0.806 0.203 1.085 1.041

Table 5.7: Evaluation results for the MPSOMUCF technique.

While the MAE is not always that much worse than the other MAEs obtained using the SOM based
recommendation techniques it is consistently the highest, however the prediction time is basically instan-
taneous, and as long as no new items are introduced coverage is near perfect.
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SOMGOODNESSCF Technique

Settings ET Us Uf Ps Pf Cov Corr MAE MAER MAEUA MAERUA NMAE MSE RMSE

DS 0 2001 0 24809 384 98.5% 46.8% 0.683 0.640 0.702 0.662 0.171 0.814 0.902

DS2 0 1998 3 21175 96 99.5% 47.1% 0.679 0.639 0.713 0.676 0.170 0.812 0.901

ML 0 943 0 19492 79 99.6% 42.2% 0.750 0.709 0.779 0.739 0.187 0.925 0.962

CML-
IMDBK

1 943 0 19197 374 98.1% 38.9% 0.802 0.771 0.823 0.794 0.200 1.050 1.02

Table 5.8: Evaluation results for the SOMGOODNESSCF technique. For the predictions based on the
SOMUCF technique; a neighborhood radius of 3 (NR=3) is used in all cases; the Weighted Deviation
From Mean prediction algorithm (with NSmin = 0, NSmax = 0) is used. For the predictions based on
the SOMICF technique; a neighborhood radius of 4 (NR = 4) is used for the DS, DS2 and CML settings
while a neighborhood radius of 5 (NR = 5) is used for the CML-IMDBK setting; the Weighted Sum
prediction algorithm (with NSmin = 0, NSmax = 0) is used.

5.4.2 Relevance of Top-N ranking lists

The result tables use the following abbreviations for the column headings: ET = Evaluation time (min),
Us = Usuccessful, Uf = Ufailed, TNs = TNsuccessful, TNf = TNfailed, TNa, Cov = Coverage, R =
Recall, P = Precision, U = Utility, RAU = RecallAU , PAU = PrecisionAU , UAU = UtilityAU .

In all cases, unless otherwise noted, a 20% Hold Out set was used that contained items assumed to
all be relevant for a user (ratings ignored as explained before in Part I), the ability of the technique to
return those items in the Top-N list was evaluated. Note that the same 20% Hold Out datasets were
used for each evaluation. Keep in mind that

Where applicable the value of the neighborhood radius NR is indicated in the settings name, e.g.
DS-NR3 means a neighborhood radius of 3 (NR = 3) was used for that setting.

In all cases a top N = 10 list was generated for each user.

TOPNSOMUCF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS-NR3 23 2001 0 15 1986 10 0.7% 0.1% 0.1% 0.001 0.001 6 0.1% 0.1% 0.001 0.001

DS2-NR3 6 2001 0 42 1959 10 2.1% 0.2% 0.2% 0.002 0.003 5 0.2% 0.2% 0.002 0.003

CML-
NR3

0 943 0 79 864 10 8.4% 0.5% 1.0% 0.007 0.008 5 0.7% 1.0% 0.006 0.008

Table 5.9: Evaluation results for the TOPNSOMUCF technique. The Weighted Deviation From Mean
prediction algorithm (with NSmin = 0, NSmax = 0) was used.

TOPNSOMICF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS-NR4 50 2001 0 8 1993 10 0.4% 0.0% 0.0% 0.000 0.000 6 0.0% 0.0% 0.000 0.000

DS2-NR4 3 2001 0 102 1899 10 5.1% 0.6% 0.6% 0.006 0.006 5 0.5% 0.6% 0.004 0.006

CML-
NR4

0 943 0 156 787 10 16.5% 1.0% 2.1% 0.014 0.016 5 1.0% 2.1% 0.011 0.016

CMl-
IMDBK-
NR4

1 943 0 216 727 10 22.9% 1.4% 2.9% 0.019 0.023 5 2.1% 2.9% 0.019 0.023

Table 5.10: Evaluation results for the TOPNSOMICF technique. The Weighted Sum prediction algo-
rithm (with NSmin = 0, NSmax = 0) was used.
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Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS-NR4 50 2001 0 8 1993 10 0.4% 0.0% 0.0% 0.000 0.000 7 0.0% 0.0% 0.000 0.000

DS2-NR4 3 2001 0 83 1918 10 4.1% 0.4% 0.5% 0.005 0.005 5 0.4% 0.5% 0.003 0.004

CML-
NR4

0 943 0 154 789 10 16.3% 1.0% 2.1% 0.014 0.017 5 1.0% 2.1% 0.011 0.016

CML-
IMDBK-
NR4

1 943 0 212 731 10 22.5% 1.4% 2.9% 0.019 0.022 5 2.1% 2.9% 0.020 0.023

Table 5.11: Evaluation results for the TOPNSOMICF technique. The Average Rating prediction algo-
rithm (with NSmin = 0, NSmax = 0) was used.

TOPNSOMGOODNESSCF Technique

Settings ET Us Uf TNs TNf TNa Cov R P F1 U AFHP RAU PAU F1AU UAU

DS 71 2001 0 5 1996 10 0.2% 0.0% 0.0% 0.000 0.000 5 0.0% 0.0% 0.000 0.000

DS2 9 2001 0 48 1953 10 2.4% 0.2% 0.3% 0.003 0.002 6 0.2% 0.3% 0.002 0.002

CML 1 943 0 45 898 10 4.8% 0.3% 0.6% 0.004 0.004 6 0.3% 0.6% 0.003 0.004

CML-
IMDBK

2 943 0 25 918 10 2.7% 0.1% 0.3% 0.002 0.002 6 0.2% 0.3% 0.002 0.002

Table 5.12: Evaluation results for the TOPNSOMGOODNESSCF technique. For the predictions based
on the SOMUCF technique; a neighborhood radius of 3 (NR = 3) is used in all cases; the Weighted
Deviation From Mean prediction algorithm (with NSmin = 0, NSmax = 0) is used. For the predictions
based on the SOMICF technique; a neighborhood radius of 4 (NR=4) is used for the DS, DS2 and CML
settings while a neighborhood radius of 5 (NR=5) is used for the CML-IMDBK setting; the Weighted
Sum prediction algorithm (with NSmin = 0, NSmax = 0) was used used.

5.5 Conclusions

The SOM based techniques do not perform better [Table 5.13] than the recommendation techniques
presented in Part I, however the results do not discourage their use. The ISOMUCF technique and
the SOMGOODNESSCF technique performs closest to the recommendation algorithm instances of the
classic UCF technique as it was evaluated in Part I (i.e. using Pearson for similarity and Weighted
Deviation From Mean for prediction). Notable is that we achieve almost 100% coverage by only using
8̃% of all nodes. For the ranking list evaluations, similar or even worse results as those in Part I are
obtained.

Recommendation techniques can be judged by many different qualities, MAE prediction accuracy
is just one quality. Other qualities include their theoretical soundness (meaning something that seems
intuitively correct, such as not only looking at how many movies two users have rated in common, but

Common SOM based
DATASET BASELINESF UCF ICF SOMUCF SOMICF ISOMUCF MPSOMUCF SOMGOODNESSCF

DS 0.687 0.679 0.727 0.715 0.689 0.673 0.758 0.679
DS2 0.667 0.657 0.707 0.715 0.693 0.677 0.816 0.683
CML 0.754 0.729 0.744 0.813 0.748 0.728 0.814 0.750

Table 5.13: Comparison between the best MAE obtained using a select set of common recommendation
techniques (described in detail in Part I) and a select set of SOM based recommendation techniques.
While the lowest MAEs have been highlighted, the variations on the third decimal are not to be considered
significant, moreso as a Hold Out evaluation was made for the SOM based techniques and a K Fold Cross
validation for the Common techniques. All techniques in the table have the same degree of coverage and
correctness.
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also determining the types of movies they have in common). In Part I the TRUSTUCF recommendation
technique is used, which is a more sound recommendation technique than UCF as it tries to determine
if a similar user has lots of experience of the type of movie he is to predict for. Another quality to
judge a recommendation technique by is to which degree the technique implements transparency. Which
quality to emphasize when selecting a technique, depends on the situation it will be used in. Does the
situation motivate the additional complexity? In Part III we will use the concept of transparency when
we visualize our recommendations.
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Part III

The recommendation interface prob-
lem

“Seeing, contrary to popular wisdom, isn’t believing.
It’s where belief stops, because it isn’t needed any more.”

– Terry Pratchett

The first two chapters in this part deals with the recommendation interface problem in terms of trust
and transparency, and how one way of solving these issues is with well explained recommendations.
Interaction design for recommender systems are briefly discussed and the concept of visualization of
recommendations are described. Previous studies done in the research community regarding these areas
are discussed and presented. Next, follows a chapter presenting the MOVSOM, a highly interactive
visual movie recommender system. We will describe the user interface of MOVSOM and its system
architecture. Challenges concerning our approach will also be discussed. No empirical evaluation of the
interface is made, in the sense of user interviews or tests, instead we highly encourage any reader of this
thesis to visit MOVSOM’s web-site1 and judge for himself. In the end we conclude and present future
work within the area of visual recommendations.

1http://www.movsom.com/

155



Chapter 6

Trust in recommender systems

The understanding and trusting of recommender systems as well as the design of the user interface has
emerged during the last years as one of the main focuses on recommender systems. Previous research
has been focused mainly on the algorithms behind the recommender systems and in particular their
accuracy as prediction algorithms. Studies [Herlocker et al., 2000], [Sinha and Swearingen, 2002] have
shown that the role of transparency in recommender systems improves the users understanding and
acceptance of the recommendations. Explanations provide transparency by exposing the reasoning and
the data behind a recommendation. The overall effect of transparency is that a user gains trust for
the recommender system, which is an important concept in any recommender system. In MOVSOM
transparency is achieved on many levels, text and graphical explanations are made for each prediction
as well as visualization of user’s neighborhoods and movies similar to each other. Another important
aspect of the interface is how the user interacts with it. For example, is it designed for the purpose of
encouraging users to explore and develope their tastes or for guiding people directly to items they would
be interested in buying immediately? What overall features leads to satisfaction with recommendations?
Studies regarding these questions and many more have been done by [Swearingen and Sinha, 2002].
MOVSOM supports different user needs, visualization of recommendations in a map like landscape is
supposed to encourage the user to further explore new movies and well motivated predictions is there to
help the user to choose the right movie according to his taste.

Whenever there exists some form of uncertainty that makes something risky, trust usually becomes
an issue. In recommender systems this can happens when recommended items are unfamiliar to the user
or when the user can’t figure out why he receives the kind of recommendations that he gets. Although
the highest risk the users take in a movie recommender system is to spend a couple of dollars on a bad
movie, there are domains in which the risk factor would have a crucial impact on the users decision in
trusting a recommendation, e.g. recommender systems in health or financial domains. This is also one
of the reasons to why recommender systems have trouble making its way into such high-risk content
domains [Herlocker et al., 2000]. A user gains trust in a recommender system over time if he has a
positive experience of the recommended items. If the experience is negative, uncertainty towards the
systems ability of making good recommendations will start to grow.

6.1 Transparency of recommendations

One method for maintaining trust and decreasing uncertainty is to implement transparency into the
system in such a way that the user knows how the system comes up with the recommendations and why
he should trust the recommendations given by the system.

Users like to know why a particular item was recommended to them, because that makes them feel
more confident about the recommendations. This was also the main result of a user study conducted in
the paper [Sinha and Swearingen, 2002]. They also reported that users find this important even for items
they already like, indicating that users are also looking for a justification of the reasoning behind the
recommendations. How well a user understand the systems reasoning behind a recommendation depends
on to what degree the system has implemented transparency, i.e. understanding of the system logic. If
a user clearly can see the link between the type of input they give to the system and the corresponding
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output, i.e. the recommendations, the system has high transparency [Sinha and Swearingen, 2002]. This
also means that a user is able to better refine his recommendations by revising his input to the system,
since he can see which parameters that are effecting the recommendations. There are many ways for the
system to implement transparency, in [Herlocker et al., 2000] they suggest that explanations (e.g. ”since
you rated x high, we recommend y”), predicted ratings (e.g. ”based on how you have rated x, we think
you would rate y with four stars out of five”) and recommending a few familiar items (e.g. items or closely
related items to which the user have had positive experience with) all are effective ways of increasing
the systems transparency from a user perspective. Predictions alone can be considered as a high-risk
feature[Swearingen and Sinha, 2001], since a system needs to have a very high degree of accuracy for
the user to benefit from it, hence predictions should always be made in the context of explanations
to cover for imprecise accuracy. MOVSOM always explain the predictions and if no prediction can be
given, explanation for that is given as well. Including familiar items among the recommended items
seems to also have a trust-generating effect [Swearingen and Sinha, 2001], as long as they are not to
directly related to the kind of information that was fed to the system by the user as input to be used
in the recommendation process. The previous experience of these items and the impression that the
systems knows you personally can be one explanation for this effect. In MOVSOM, recommendations
are tagged as familiar, neutral and serendipitous, allowing the user to judge for himself what kind of
recommendation he is in the mood for.

6.2 Explanation of recommendations

If a user can figure out why he have received a particular recommendation, he can better judge if the
recommendation is based on accurate information or not. One paper that deals with this question is
[Herlocker et al., 2000], in which different ways of explaining recommendations with the help of graphics
and commentaries are investigated. A user study was conducted in which the users were presented with
twentyone different explanation interfaces. Each explanation interface contained one recommended unti-
tled movie and each user was told to rate that movie according to the explanation of the recommendation
for the movie. To their surprise, it wasn’t the explanations that contained the most information that
was preferred by the majority of users, instead they preferred more simpler explanations. Examples of
these are shown in [Figure 6.1].

Figure 6.1: Expert users was found to prefer the explanation interface to the right while the majority of
the users, i.e. ordinary users, preferred the more simpler one to the left.

Another paper [Bilgic and Mooney, 2005] argues that the approach taken in [Herlocker et al., 2000]
only measures how well the explanation promotes the recommended item, i.e. convinces the user to
adopt the item. They suggest that instead explanation interfaces should not only be selected based on
how good they are at promoting items but also on what the users really thinks of the items after they
have tried them out, which they refer to as the user satisfaction of the recommended item.

Three different explanation interfaces were tested; neighborhood, keyword and influence based. The
keyword based explanations consist of the keywords in the user profile that had most influence on why
the item was recommended [Figure 6.2]. The neighborhood style explanation uses the opinions of the

157



users neighborhood in the explanation for a recommended item, as depicted in [Figure 6.3]. The influence
style explanation explains the recommendation by telling the user how his interaction with the system
has led to this recommendation, it does so by showing a table that explains what had the most impact
on the recommended item [Figure 6.4].

Figure 6.2: The keyword style explanation. By clicking on explain the second picture appears, revealing
where the keyword appears. Rating is the user’s rating for that item and count is how many times the
keyword appears.

Figure 6.3: The neighborhood style explanation.

Figure 6.4: The influence style explanation

In order to compare these method to each other, they designed a user study in which thirtyfour users
were told to first rate an item according to the explanation and then try it out and rerate it according
to what they really thought about it. The difference between these two ratings was measured and the
explanation system with the minimum difference would be considered the best.

Their result from this user study shows that the keyword and influence style explanation was most
satisfactory (almost identical) and that the neighbourhood style was least satisfactory. From the promo-
tion perspective of explanations, the neighborhood based style performed best, people clearly overrated
items that were explained by how their neighbors thought of them.

These two studies clearly shows that explanations have influences over how a user will judge a
recommendation. Users seem to prefer the opinions from their neighbors, which both studies show, but
the second study also shows that it is very likely that the users have too much faith in others opinion.
Additionally the second study shows that the promotion ability of a recommendation is not good enough,
it should also let the user assess the true quality of the recommended item. In MOVSOM, explanations
either encourage the user to explore the items further or explain why they should be avoided.

158



6.3 Interactive design of recommender systems

Two important questions that must be considered in designing a highly interactive user interface is what
user needs are satisfied by interacting with the system and what specific system feature leads to satis-
faction of those needs [Sinha and Swearingen, 2002]. Interaction with a recommender system usually
means that the user provides information about himself as input, the system processes that information
and generates an output of recommendations that usually are displayed as a ranking list with some ex-
plainations about the reasoning behind these recommendations. Some findings made in the study done
by [Sinha and Swearingen, 2002] suggests that users must be allowed to explore the given recommenda-
tions, refine recommendations e.g. rerate them or exclude/include new information into his user profile
and have access to detailed information about the recommended items. Users also seem to be more
willing to provide more information about themselves if it leads to better recommendations. MOVSOM
has a clear and well defined goal; it should be fun to search for movies, both new and old ones. The
process of rating and seeking out similar movies is taken into a new dimension, instead of the commonly
used one-dimensional lists of movies ranked by some parameters, MOVSOM visualizes similar movies
on a two-dimensional map, making rating and exploring of movies more intuitive and funnier. Users
with a need of quickly locating movies similar to a certain movie are supported by the basic MOVSOM
and users that want help in deciding if a certain movie is in his taste are supported by Personalized
MOVSOM.
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Chapter 7

Visual recommendations

Most recommender systems given e.g. a single movie are able to produce a Top N list of recommendations:

1. Movie 1

2. Movie 2

3. Movie 3

4. . . .

In which the numbering (if available) indicates the relative ”ranking” of the recommendations, the
first ranked recommendation is by the system determined as the strongest recommendation, the third
ranked recommendation is weaker than the two above it. Recommendations may be ranked by predicted
value, similarity or other similar ranking metrics. In [Figures 7.1–7.4] various versions of Top N lists are
displayed based on just a single movie, in [Figure 7.5] a Top N list is shown based on an entire rating
profile.

Figure 7.1: MovieLens QuickPick feature, displaying top recommendations given the movie ”The Thing
(1982)” (discussed in Part I).
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Figure 7.2: Amazon displaying top recommendations on ”The page you made” (discussed in Part I)
given that I visited the product page for the movie ”The Thing (1982)”

Figure 7.3: IMDB’s recommendation center (discussed in Part I) displaying top recommendations for
the movie ”The Thing (1982)”.
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Figure 7.4: Top recommendations displayed on the product page of the movies ”The Thing (1982)” of
the Swedish e-commerce store Discshop

Figure 7.5: MovieLens ”Top picks for you” will displayed a list of movies ranked by predictions made
based on a user’s entire ratings profile.

Within information retrieval the traditional approach is again to return a ranked list of documents,
Google uses a ranking metric termed PageRank [Brin and Page, 1998] to order the retrieved documents
in a ranked list [Figure 7.6].
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Figure 7.6: Google documents retrieved using the search query ”the thing”.

In the traditional 1-dimensional case the user usually focus his interest on the top of the list, and most
often that is all that the user is provided with. Providing the user with the entire list of ranked items or
documents may prove of little use to the user as it may be hard to judge the relative relevance of items
on positions in the middle of the list. This does not encourage the user to explore the recommendation
list. An alternative is to display a 2 dimensional list, i.e. a map of recommendations, since there no
longer will be any ”Top”, focus can be put on the explorative part.

As previously discussed in Part II, there are different methods for projecting high dimensional mani-
folds onto a two dimensional display, the usage of a two dimensional display of document similarity was
suggested for use in information retrieval as early as 1969 by Sammon [Sammon Jr., 1969]. Sammon
suggested an experimental system in which a user would examine the 30 highest ranked documents re-
trieved by the system, the examination would involve looking at the abstracts of the documents and while
doing so the user would indicate which documents he considers relevant. Having done this, a scatter
diagram [Figure 7.7] would be shown where each of the 30 documents would be indicated by an I or R
depending upon its relevance. In addition the original query vector would be displayed as a Q on the
scatter diagram. The user could then examine the relative positions of the documents in the mapping,
the user would then select one or more relevant documents to be used to generate new query vector(s).
The concept being that a query vector can be moved to highly relevant regions of the document space
by interacting at a display console with a geometric representation of the space.
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Figure 7.7: A suggested experimental document retrieval system. Given the 30 most relevant documents
to a user query, the user can indicate which documents he considers relevant and irrelevant, a sammon
mapping (or similar) could then be done of the documents to display their relative location, documents
would be labeled as I or R depending on their user decided relevance. The original query vector is also
displayed. The user can then make new queries by selecting one or more documents (using e.g. a light
pen on a crt display) to base new queries on. The concept being that a query vector can be moved
to highly relevant regions of the document space by interacting at a display console with a geometric
representation of the space.

In [Silaghi, 2004] it is discussed how the automated categorization of texts into predefined categories
can be visualized. In a information retrieval system that retrieves text documents, the similarity between
documents can then be visualized by showing how similar the categories the text documents retrieved
belong to are. It is additionally stated that visual techniques harness human perceptual capabilities to
detect patterns and outliers in visual information. A algorithm that visualizes the distances between
document categories is presented, a test dataset consisting of 20 different categories (newsgroups) with
1000 documents for each category (posts to each newsgroup) is used. A two dimensional (called bi-
dimensional in the paper) display of the categories from the test dataset is displayed in [Figure 7.8].

Figure 7.8: Two dimensional visualization of distances between text document categories (newsgroups).
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However, it is not necessary for the visualization to preserve distances, only the documents relative
similarity needs be preserved. A information retrieval system for newsgroup documents that visualizes
the ordering of newsgroup documents as well as newsgroups using what is referred to as the WEBSOM
method is presented in [Honkela et al., 1996]. The WEBSOM method uses the SOM algorithm to create
two dimensional document maps, this means that distances wont be preserved, however visualization
of document similarities will be easy to visualize, as will the discovery of related documents be. A
presentation of the latest WEBSOM is given in [Kohonen et al., 2000] where a two dimensional map of
over 80 million newsgroup documents is created. An interface for the WEBSOM map is further described
in [Lagus, 2000]. The interface is build on the idea of zooming in on the map on locations containing
information of interest, labels are displayed on the map to give an idea of the information stored at
that map location, and exploring nearby locations on the map once a location containing interesting
information has been found [Figure 7.9].

Figure 7.9: The WEBSOM method was used to create a two dimensional map of over 80 million news-
group documents. The map is visualized as a heat map where dark colors indicate few documents, light
colors indicate many documents. The labeling indicates the category most representative for the type
of documents contained in the location. At the highest level of zoom no documents are visible, only the
labeling which can be used as an indication of newsgroup similarity. Clicking on a location on the map
zooms in (in this case in three steps) on the node until finally the documents in the node are shown. By
moving to nearby nodes further similar documents can be found.
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In [Novak et al., 2003] a information retrieval system for articles is presented, a first application
context of their work is the Internet platform netzspannung.org1 which aims at establishing a knowledge
portal that provides insight into the intersection between digital art, culture and information technology.
They provide a SOM based visualization system of articles with an exploratory interface [Figure 7.10].
In their paper they also discuss the concept of personal maps [Figure 7.11], the idea being that expert
users use their system to find articles within their expertise and interest and add those to their personal
map where they themselves visually indicate the articles relative similarity. By comparing personal
maps with other user’s, the system can recommend personal maps between users. However the idea of
personal maps is not further explained (specifically how to compare the maps is not explained) and is
only presented as a future work.

Figure 7.10: Netzspannung interface for exploring similar articles. At the highest zoom only various
category labels are visible, however some dots are available that can be clicked to look at a document
probably representative for the category. In this case a node containing information on the AWAKE
project was selected. By zooming in on the map (which is done by dragging a slide bar) more detailed
information is shown on the map about documents in the zoomed in area. By selecting an article and
asking for documents similar to it a graph is displayed indicating locations (far or near on the map)
containing similar documents. The idea probably being that besides exploring nearby locations on the
map for similar documents, the user can jump to seemingly distant locations that still contain documents
of some relevance.

1http://www.netzspannung.org/
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Figure 7.11: What is called the ”Knowledge explorer system interface” in [Novak et al., 2003]. The upper
left hand window is a ”content map” with what is called the ”concept map” to its right. The content
map displays documents while the concept map attempts to motivate the structure that gave rise to
the document display. The lower-right hand window displays a personal map, users are able to drag
documents from the document map onto it and arrange them as they deem suitable. And the lower-left
hand window displays information about the currently selected document.
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In [Pampalk, 2001] the SOM algorithm is applied to music files represented using features of the
actual music. Users can then explore the map based visualization ”Islands of Music” to find similar
music [Figure 7.12].

Figure 7.12: ”Islands of music”. A map is created using the SOM that displays music and allows for
exploration of similar music pieces. Assuming that the user knows neither artist nor title the pieces of
music are represented by white balls instead. Moving the mouse over one of these white balls displays
the tool tip (yellow popup) with the artist and title of the song.

In Gnovies2 a ”rock star approach” to recommendations of movies is taken, based on what is called
a cycle where users rate something near 10 movies the system recommends similar movies and displays
them using a spring effect that doesn’t necessarily indicate movie similarity, but nevertheless displays
recommendations on a two dimensional map that can be explored (however exploration is not intuitive
as movie neighbourhoods constantly changes) [Figure 7.13].

Figure 7.13: The Gnovies movie recommender system’s based on the rock star approach. Showing movies
similar to the movie ”The Thing (1982)”. A spring effect is used where all movies are first bunched
together and fly out like a spring to separate themselves, probably without any similarity meaning,
though still a neat effect.

2http://www.gnovies.com/
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Indeed most of the examples presented can be seen as making recommendations, they are after
all displaying documents or music similar to some known (selected) document or music. Within a
recommender system the traditional Top N recommendation process can be made transparent to the
user by displaying recommended items on a map, i.e. showing a two dimensional Top N list [Figure
7.14]. Instead of the traditional one dimensional Top N list where the first entries are easy to grasp
as relevant and the remaining items harder to judge relevance for and not easy to explore, the two
dimensional Top N list’s map display will further encourage the user to explore the recommendations
since moving around in the map is intuitive and easily understandable. As the only change that has
been made is the display of the Top N list, this is termed a visual recommendation which by the use of
a visual display adds value to a traditional Top N list while at the same time encouraging exploration
of recommendations. By studying any nearby item in the map, its neighbourhood of similar items is
immediately visible adding on an understanding for what kind of recommendation it is.

Figure 7.14: Basic MOVSOM map, looking up the movie ”The Thing” shows its position on the MOV-
SOM map and its surrounding similar movies. A two dimensional Top-N list, that encourages exploration
of recommendations.
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Chapter 8

MOVSOM - State of the art

“Always listen to experts. They’ll tell you what can’t be done and why. Then do it.”
– Robert Heinlein

MOVSOM is a recommender system for movies that will tell a user how much he will like a certain movie
and why he should trust the given recommendation. The system visualizes movie recommendations and
encourages users to explore the recommendations. Recommendations consist of similar movies visualized
(as a two dimensional Top N list) in the form of a map. The system has two usage modes:

1. Non-profiled based MOVSOM (Basic MOVSOM)

2. Profile based MOVSOM (Personalized MOVSOM)

In the first mode the system visualizes recommendations based on the movie the user searched for,
thus requiring no user profile, in the second profile based mode, the user is able to rate and tag movies
and during exploration of recommendations also get predictions for movies. In addition the profile based
mode introduces a user map, consisting of all MOVSOM users. The user is able to locate himself on the
map, as well as see where users that have seen the active item are in relation to himself. As predictions
are made, the users making the predictions will also be indicated on the user map.

MOVSOM does not focus on providing users with information about movies, instead the visualized
relationships between movies is the focus, however a basic set of identifying information is given about
each movie, including title, release year and director. Instead links to the IMDb are always provided,
encouraging users that find seemingly interesting movies to visit the IMDb for actual information.

8.1 MOVSOM map

MOVSOM uses the SOM algorithm to create a SOM that allows mapping of movies onto a two di-
mensional map. However the SOM will map multiple movies into the same nodes, i.e. movies end up
”stacked on top of each other” in the same node on the map, thus to make it possible to provide visual
recommendations and to navigate the map by only looking at the relationship between movies, the map
needs to be ”stretched” out such that movies in the same node are no longer stacked on top of each
other.

The map stretching can be done in several ways, a rough but simple solution is to determine how
many movies a node in the map contains on an average (or at a maximum, but that may lead to a
unneccessarily sparse stretchmap) and then transform each node into a (quadratic) grid large enough to
contain such a number of movies and simply tile up each node’s grid into a larger stretch map [Figure
8.1]. Nodes with more than the average number of movies would need to be treated specially by e.g.
listing the overflowing movies separately below the viewed map section (assuming the whole map is not
viewed at once). Nodes with less than the averge number of movies would have its data placed out in
some suitable fashion, e.g. randomly (to cover more of the node’s grid) or focused in the center of the
node’s grid (to emphasize the data is equal to each other).
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Figure 8.1: Stretching out a 4x4 map with 27 items mapped out into 4 nodes to a 16x16 map where each
item lies in its own node.

However, despite that movies ended up in the same node in the SOM, i.e. had the same BMN, they
are not going to be exactly the same. A user may pick up on this and consider the randomly selected
relative placement of two movies within a node’s grid in the stretch map as an indication of a relationship,
e.g. since movie A is below movie B, the user may select to navigate down the map for more movies like
B. Unless movies are truly equal in a node the movies within a node’s grid in the stretchmap should be
ordered in some fashion.

A solution would be to create a smaller SOM using only the movies in each node, essentially making
a hierarcical SOM and puzzling the hierarcies together into one level. However such a scheme would fail
to account for the relationships between movies in the node and movies in neighoring nodes, thus not
truly solving the problem.

A optimal solution to map stretching would be to simply arrange the movies within the node’s grid
such that movies as far as is possible are placed on the edge adjacent to the grid for the neighboring node
they are most similar. Thus movies in a node more similar to the node on the ”left” should be placed
near the left edge of the node. Such a scheme for map stretching is essential to MOVSOM’s ability to
provide visual recommendations where the users themselves can determine movie similarity based on
distances in the movie map.

8.2 MOVSOM interface

The MOVSOM interface consists of two basic parts [Figure 8.2], the MOVSOM map and the sidebar.
By searching for movies by their title the section of the map containing the movie will be shown

with the searched for movie placed in the middle of the map. Clicking on nearby movies will display
information about that movie and recenter the map around the new movie, by this method the map can
be navigated.

The sidebar always shows at least the title of the currently selected movie (if any) and provides a
link to the IMDb where more attribute information can be obtained for the movie. In the personalized
mode the user can always rate and add tags to the movie using the sidebar.

In the basic mode the sidebar [Figure 8.3] displays a U-matrix that shows the global movie map with
the active movie indicated. The U-matrix can also be used to jump around in the movie map by simply
clicking in it. By showing the U-matrix as a global view of the whole movie map the user can get a
clearer sense of direction when searching and moving around in the map.

If the user has a rating profile a U-matrix for the user map is also shown in the sidebar [Figure 8.4(a)]
indicating where the active user’s position and where users that have rated the active movie are located in
the user map. Groups of users are shown as green, yellow or red dots, indicating the groups preference for
the active movie (red = don’t like it, yellow = neutral, green = likes it). Two predictions are also shown,
one based on the active user’s average rating on movies similar to the active movie and one based on the
active user’s neighbors opinion on the active movie. Additionally a goodness recommendation combining
and summarizing the shown visual recommendations and predictions into a textual recommendation is
provided.

The sidebar also contains tags [Figure 8.4(b)], descriptive keywords users can associate with movies
in the moviemap, shown as a ordered tag cloud where similar tags are placed near each other and sized
according to have many times the tag has been assigned to the movie by different users. The tags provide
additional movie information in place of complete movie attribute data.
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Figure 8.2: MOVSOM interface showing the placement of the map (left) and the sidebar (right). Movies
are searched for using the search interface at the top of the interface. A search and a serendipity button
is provided, the later showing a movie at random in the map.

Figure 8.3: MOVSOM in basic mode, the user searched for ”The Thing”, the part of the MOVSOM
map containing the thing at its center is shown. Note that movies are either displayed using a icon
representing the movie (typically the DVD cover etc.) or its name in plain text. Since MOVSOM is in
the basic mode the sidebar shows only non-personalized information, tags, populations average rating
on movie and populations opinion on the movie. The U-matrix indicates where the movie searched for
is located.
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(a) The active user’s average rating on
movies similar to the active movie is shown,
as well as the active user’s closest neighbors
prediction on the movie. In addition a
textual goodness recommendation is shown
at the top. The lower U-matrix in this case
is of a user map, where the red dot indicates
the active user’s location in the map, the
green, yellow and red dots indicate where
groups of users that like, stand neutral or
dislike the active movie are located. The
idea being that the user can judge where
people who like the current movie are
located relative himself.

(b) The users can tag movies. Tags are
ordered based on similarity to each other
and sized according to number of times tag
has been assigned to the movie by different
users.

Figure 8.4: Sidebars shown in the personalized mode, in which the active user has a rating profile.
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8.3 MOVSOM architecture

The MOVSOM architecture will be described as consisting of several separate modules. Each module
has a specific parameter requirement and output specification, typically each module is connected with
one very specific part of the MOVSOM interface, the flow chart [Figure 8.5] gives a rough idea of how
these modules will be used in the live application. A user is placed out and a series of arrows give an
idea of the flow the user will set in motion when interacting with various modules.

SOM module Using the entire database of user ratings on movies a user SOM and a movie SOM is
trained using e.g. the SOM implementation described Chapter 5.

Map stretching module Stretches the movie map created by the movie SOM such that movies ”stacked
on top of each other” in the same node are no longer stacked on top of each other, and instead are
placed beside each other such that they have both a relationship to the movies in the same node
and to the directly neighboring nodes.

Map navigation module Locates a movie in the stretched out maps and serves up the movie’s imme-
diate neighborhood in the stretched out map. Given the movies stretchmap position the movie’s
position in the movie U-matrix is marked (note that the U-matrix for the movie SOM is still
representative of the cluster structure in the stretch map).

Search module Given a seach query a movie database is searched for a movie matching the search
query, the map navigation module is then automatically called to retrieve the corresponding map
section.

Recommendation module Provides recommendations for an active user on an active movie, the rec-
ommendations are statistical non-personalized recommendations in the basic mode, however if the
user has a profile the recommendations are personalized. The statistical recommendations calcu-
lated are based on the populations average rating on the active item. In particular the personalized
recommendations include calculating the user’s average rating on movies similar to the active movie
and calculting the user’s neighbors average rating on the active movie.

Average rating prediction The prediction can be made using a recommendation algorithm based
on the SOMICF technique which simply calculates the active user’s average weighted rating on
similar movies, i.e. uses the Weighted Sum prediction algorithm. In this case similar movies can
include all movies currently in the map section the user is viewing, plus a few nearby movies not
visible in the current map section. This prediction can only be made when the user has rated a
minimum number of movies. However, because of size of the movie map, even if the user has rated
20 - 100 movies, it is overall not likely those movies lie in the visible neighborhood of an movie
the user wants a prediction for, thus the user will not always receive a average rating prediction,
however it will be clear to the user why he isn’t receiving any average rating prediction, he hasn’t
yet rated any movies similar to the active movie.

Neighbor prediction The prediction can be made using a recommendation algorithm based on the
SOMUCF technique which uses the Weighted Deviation From Mean prediction algorithm, which
calculates the active user’s neighbors wighted deviation from their mean rating and adds it to the
active users mean rating to get a prediction on the active movie. The neighborhood radius can
be set dynamically to accommodate a sufficiently large part of the map. This prediction can only
be made when the user has rated a minimum number of movies. Since neighbors of the active
user can have seen movies not within the neighborhood of any movie the active user has seen, the
neighbors may be able to produce predictions with a much larger coverage than for the average
rating predictions.

Goodness recommendation The recommendation indicates the level of safety and serendipity of
the movie. The recommendation can be based on the SOMGOODNESSCF technique, but give a
textual recommendation instead of a weighted prediction based on the SOMUCF and SOMICF
technique.

Rating module Adds the active user’s rating on the active movie to the rating database R. If the
number of ratings for the active user or the active movie exceeds a minimum ratings threshold, e.g.
5 or 20, then the active user or the active movie’s position in the map will be recalculated.
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Figure 8.5: MOVSOM architecture flow chart. A user either requests a movie from the movie database,
rates a movie or tags a movie, each action setting up a sequens of interactions between various modules.
The model step is made when enough new ratings have been added to the rating database.
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Tagging module Adds the active user’s tag on the active movie to the tag database T .

8.4 Challenges

While the SOM introduces a model step that greatly reduces the constraints of the memory based
recommendation part of the MOVSOM recommender system, some noteable challenges are however
introduced related to the introduction of new movies and new users.

Let the original set of movies and users used to create the user and movie SOM be denoted by M
and U respectively.

8.4.1 Introduction of new movies and new users

If a new movie m /∈M is introduced to the system, since it has no ratings it is imposible to place it out
on the movie map. As soon as a suitable number of users u ∈ U has rated the movie it can be placed out
by comparing the movie’s rating vector with all the reference vectors to find a closest reference vector,
the map stretching module can then give the new movie a location in the stretched out map. (Variant
of the SOM algorithm such as hierachical SOM’s and growing SOM’s can also be used to accommodate
for new users and movies.)

But a user u ∈ U ratings on the the new movie will not affect the user’s position in the user map.
Thus nomatter how many new movies are introduced into the system, the user’s position in the user
map will never change when rating the new movies.

If a new user u /∈ U is introduced to the system, since the user has not rated any movies it is
impossible to place the user in the user map. Hence the user can not initially receive predictions by
any neighbors while browsing the movie map. The user can not receive any average rating prediction
either as the user has not rated any movies. However, as soon as the user has rated a suitable number
of movies m ∈M the user can be placed out in the user map by comparing the user’s rating vector with
all the reference vectors to find a closest reference vector, the map stretching module can then give the
new user a location in the stretched out user map. The user will then be able to receive predictions by
his neighbors. But if the user only rates movies m /∈ M the user will never be possible to place out in
the user map, and since the user hasn’t rated any movies in M , the user wont be able to receive any
predictions of either kind until the SOM’s are retrained with the new users and movies.

The challenge with making predictions for new movies and new users can be overcome to a limit by
adding new movies and new users to the movie map and user map reference vectors correspondingly.
Ratings on new movies m /∈M and by new users u /∈ U will then affect movie and user positions in both
maps just likes movies m ∈ M and users u ∈ U will. By requiring new users to initially rate a random
sample of 5 - 20 movies m ∈ M the system will be able to place out the new user, and having done so
the system will be able to update the corresponding reference vector and reference vectors of neighboring
nodes to resemble the new user rating vector. It is not as straightforward to solve the problem of new
movies, but a similar approach where users are asked to rate new movies placed in a ”New movies queue”
could be used.

8.4.2 Retraining the SOM

As the number of users and movies grows, retraining the SOM to accommodate for new users and movies
will become nececssary, however retraining will grow more and more timeconsuming as the dimensions
of the user and movie rating vectors will grow. To this end some form of dimensionality reduction
techniques must be applied. This however introduces a new challenge when introducing new users and
movies as reference vectors are now on reduced dimensionality form. However at such a point the SOM
and corresponding map would be made very large, reducing the frequent need for updating reference
vectors. However, using variants of the SOM algorithm the dimensionality problem can possibly be
solved more elegantly, such as creating lots of smaller maps and combining them into a large map (then
retraining only has do be done on the smaller maps).

176



Conclusions

In this thesis, we have described the architecture and implementation of a movie recommender system,
called the MOVSOM. The system incorporates the SOM, developed by Teuvo Kohonen [Kohonen, 2001]
as well as known recommendation techniques. Early versions of MOVSOM was developed in two projects,
in connection with the courses ”artificial neural networks” and ”information retrieval on the internet”
taught at the university of Uppsala during the year 2004. This thesis has since the fall of 2004 been
an ongoing project that finally resulted in this master thesis. In this thesis we have shown that MOV-
SOM is comparable to traditional techniques used by recommender systems when it comes to accuracy
of the given recommendations. MOVSOM offers a highly interactive user interface, and implements
transparency that gains trust among its users, as defined by recent studies. A new way of presenting
recommendations is utilized by MOVSOM. We claim that this visualization of recommendation is more
intuitive than the traditional way of presenting recommendations as one-dimensional lists, in the sense
of visualized similarity among the items. Our study of different prediction algorithms has convinced us
that the accuracy of present algorithms are as good as they can be, in the sense that a few decimals
in either direction of the mean absolute error doesn’t have any impact on the overall acceptance by
the user of the recommendation. The use of the SOM algorithm as a part of a recommender system is
promising, its topologically preserving capabilities has been shown to be a very suitable feature to use
in a recommender system.

“O Spot, the complex levels of behaviour you display connote a fairly well-developed cognitive
array.” – Data
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Future work

An important issue for future work is to research and explain how MOVSOM incorporates what is
commonly referred to as Web 2.0. How can for example MOVSOM be used in the new Web 2.0 phenomena
commonly referred to as collaborative tagging. Using MOVSOM tags can be visualized in new and
interesting ways as opposed to being used as simple alphabetical lists of tags associated with a item.

Navigating the semantic web, another often heralded feature of Web 2.0, have been attempted using
tags and hierarchical categories, it is our intention in the near future to provide a browser plug-in
interface (for which Firefox seems to be a good choice) that incorporates visual navigation of both the
collaborative and the semantic movie web.

Another interesting direction for future work is how recommender systems can play an important
part of online communities, i.e. social collaborative filtering.

Figure 8.6: Five by Five! The Firefox browser plugin for VISUALLY navigating the collaborative and
semantic movie web. Soon, in a future near you!

Further research regarding the interface of MOVSOM is also planned, features such as personalized
maps, where each user creates his own map consisting of movies, ordered and labeled by the user
himself. This maps can then be compared to other users maps and also be used by MOVSOM to base
recommendations on

Algorithmically we would like to investigate different SOM techniques like hierarchical SOMs and
growing SOMs to see if they can contribute to making the interface even more interesting without loosing
any of its current capabilities. We are also interested in researching the possibilities of using a spherical
SOM to increase the intuitivety of the maps.

Practically we will investigate the implications of the usage of very large datasets. Finally we are
also interested in studying the possibilites of using the MOVSOM interface for navigating between sites
on the web.

“It is, in an unprecedented sense, your movie. So, it if sucks, it’s your fault.” – Joss Whedon
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