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Abstract 
In the paper [1] we presented MOVSOM , a fully 
automatic movie recommender system with no need 
of user preferences whatsoever. In contrast to 
movie recommender systems like MovieLens1, that 
are depended on user input in form of rankings of 
movies or IMDB's 2  recommending system that 
relies heavily on users recommendations and 
keywords in order to be able to recommend movies,  
MOVSOM doesn't require any input. Our aim was 
to cluster movieplots and visualize the results in a 
user friendly way and make it possible for a user to 
select a movie they have seen and then be 
recommended movies that are similar to that movie 
in some way. Our belief that this was possible was 
due to WEBSOM [2], which is a system for 
clustering documents based on their content. In this 
paper we present MOVSOM-II, a successor to 
MOVSOM, but with better visualisation, 
preprocessing techniques and analyzing of the 
result. 

INTRODUCTION 
Previous work on clustering movies without user 
preferences can be found in [1], [3]. Despite the 
fact that they both fail in some sense, they both 
suggest that to get better result, one should use 
movieplots with more text and preprocessing 
techniques that are more sophisticated. To achieve 
this we have implemented some extra features in 
MOVSOM [1]. The new features we have 
implemented are the use of Porters stemming 
algorithm, better stoplist (more domain specific) 
and the use of TF-IDF as word frequency weights. 
The data sets are also different, we use both Usenet 
movie reviews (because they contain more text) and 
IMDb's movieplots together with taglines and title. 
We have also extended the possibility to analyze 
the result we get, this includes labelling the nodes 
in the SOM grid in different ways. The labeling 
also helps to visualize the result in a more user 
friendly way 

THE VECTOR SPACE MODEL 
We have chosen to use the vector-space model to 
represent the data since it is a very common way to 
represent such data and it is very simple to 
implement. In the vector-space model each 

                                                 
1 http://movielens.umn.edu/ 
2 http://www.imdb.com/ 

movieplot is represented as a vector in a vector 
space. Each dimension of the vector corresponds to 
one keyword and the value represents the frequency 
of the keyword. When the data is represented in this 
way it is easy to calculate the similarity between the 
vectors and if you know which vectors are similar 
to each other, you can order those vectors together 
in clusters. 

FEATURE VECTOR MATRIX 
To represent the frequency of the keywords we 
have used the Term Frequency - Inverse Document 
Frequency (TF-IDF), which is a better way than the 
frequency formula used in [1]. The difference is 
that the previous formula was too sensitive to word 
spamming and didn't weigh in both the importance 
of the keyword in both the movieplot and the 
movieplot collection, it only considered how 
important the keyword was in the movieplot 
collection. 
 
The formula for calculating the weight for a 
keyword is:  
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NORMALIZATION 
To avoid domination of some dimension when we 
calculate the similarity of the vectors, their values 
must be normalized. There are many ways of 
normalizing a feature vectors matrix, we chose to 
normalize the variance [4] as it is a simple 
normalization method that is well used. To 
normalize the variance the standard deviation and 
mean value for each column is calculated and each 
value in the feature vectors matrix normalized using 
the formula: 

x

xxx
σ
−

='  

where x is the mean and xσ the standard deviation 

for the column that value x is in. 

DIMENSION REDUCTION 
Term frequency matrices are typically of very high 
dimensionality (of orders of several thousands) and 
are very sparse (a very small percentage of the 
attributes of the feature vectors are non-zero), and 
this leads to certain problems for clustering 
algorithms. The problems is that it is 
computationally heavy and time consuming to work 
with feature vectors of high dimensions. Another 
problem is that clustering algorithms that uses 
Euclidian distances measures wont do so well as in 
high dimensions distances don't vary very much. 
Typically one solves this problem with the help of 
dimension reduction techniques. The one we have 
chosen is called random projection and is described 
in [5], [6], [7]. The main advantage with the use of 
random projection is that it is much faster than 
other well known and used techniques such as 
Principal Component Analysis and Single Value 
Decomposition. Empirical tests [5], [6], [7] have 
shown that random projection does well in 
comparison with the PCA and SVD techniques. 
 

 
fig. 1 illustrates the process of Random Projection.  
 
Consider a Feature Vector matrix  (N being 
number of movieplots, and d number of keywords 
extracted in our case) and a Random Matrix  
(where k is the desired new dimension of the 
feature vectors matrix). If k is at least of size 
100,according to [5], then the relation between the 
projected movieplots in the resulting matrix  
are a very good approximation of the corresponding 
relation to the original movieplots in the original 
matrix . Each row in the Random Matrix 

 consists of randomly generated values, 
empirical tests in [5], [6] have showed that it is 
enough to use 5 uniformly distributed 1's on each 
row and zero's everywhere else, to get a good 
approximation. 

dNF ×

kdR ×

kNFP ×

dNF ×

kdR ×

 
The projection is thus a simple matrix 
multiplication:   =   x  kNFP × dNF × kdR ×

SIMILARITY MEASURE 
To be able to determine if two vectors are similar in 
some sense, we need to define a similarity function. 
Two very common similarity functions are the 
Euclidian distance and the cosine similarity 
function. 
 
Euclidian distance 
The similarity between two documents is their 
distance to each other, if the distance is near zero 
they are considered similar and if the distance is 
close to one they are considered different. 
The distance between two documents is calculated 
with the following formula: 

dist( ) = ji dd , ( )∑
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Cosine similarity 
The similarity between two documents is the cosine 
of the angle between them (see fig 2), if the cosine 
of the angle is close to one they are considered 
similar and if the cosine of the angle is close to zero 
they are considered different. 
The cosine between two documents is calculated 
with the following formula: 

sim( ) = ji dd ,
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which is the cosine formula. 
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Text preprocessing 
step 

#Keywords* #Words** 

Text cleansing 2612 8677 
Removal of short 
words 

2597 8247 

Lowercasing words 2597 8247 
Removing stopwords1 2395 4399 
Removing stopwords2 2335 4133 
Stemming 1964 4133 
Word reduction 623 2595 
table 1: Preprocessing 97 IMDb plots. 
* Number of unique words in the document 
collection. 
** Total number of words in the document 
collection. 
 
Text cleansing 
Removes punctuation characters such as \ ' " ´ ` / . , 
= : ; ( ) { } ! ? - ] and words containing characters 
other than letters. 
 
Removal of shortwords 
Gets rid of short words that the text cleansing 
leaves, i.e. removing the apostrophe from "Guard's" 
leaves the short word "s" that should be removed. 
We do not worry about accidentally removing any 
significant short words as we don't know of any. 
 
Lowercasing words 
Make documents look pretty by lowercasing all 
words. 
 
Removing stopwords1 
A generic text stopwords list is applied that 
removes words such as "the", "a" etc. 
 
Removing stopwords2 
A domain specific stopwords list is applied that 
removes such words as "movie", "actor" and so 
forth that we don't believe contribute to describing a 
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movie. This list isn't complete and could be more 
extensive, though we hesitate to make it bigger than 
necessary initially before we are more certain about 
its necessity. 
 
Stemming 
Porters stemming algorithm is applied to (hopefully) 
stem words to their base stem, e.g. "zombie" and 
"zombies" might be stemmed to "zombi" which is 
good, however "anime" and "animal" might get 
stemmed to "anim" which is bad. 
 
Word reduction 
Removes words that occur to infrequently or too 
frequently in the document collection. This helps 
get down the dimensions which is necessary and 
thus has tradeoffs and removes word that can't 
possibly contribute to the clustering of document. 
In the above example we only removed words that 
only occurred in one documents. 
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CLUSTERING ALGORITHMS 
We have used two different cluster algorithms: K-
means and Kohonen's self-organizing map. 
 
K-Means 
K-Means is an iterative clustering algorithm in 
which items are moved among set of clusters until 
the desired set is reached. The algorithm consists of 
the following steps: 
1. Choose K initial cluster randomly (representing 
the K movieplots) and calculate the mean for each 
cluster. 
2. Present every movieplot vector to the algorithm 
and calculate the similarity between the movieplot 
vector and the centre of each cluster. Assign the 
movieplot to the cluster with greatest similarity.  
3. Recalculate the means for every cluster. 
4. If the means are different from previous step, 
repeat step 2-4. Otherwise terminate the algorithm. 
 
We used Matlab's own K-means algorithm and we 
used cosine as our similarity function. 
 
The quality of K-Means clusters can be studied by 
creating a silhouette plot that shows how much the 
clusters created are "separated" from each other . 
 
Kohonen's self-organizing map (SOM) 
The trained SOM is a two-dimensional, ordered 
lattice (a simple grid) where each node in the lattice 
represents a set of feature vectors in input space. 
Nodes in the lattice that are neighbours are also a 
neighbours in the input space. 
 
The SOM algorithm places a set of reference 
vectors into the input space so that the feature 
vectors are approximated by the reference vectors. 
The reference vectors are constrained to a two-
dimensional regular grid that forms an "elastic 
network" which follows the distribution of the 
training data in a nonlinear fashion.  
 
The SOM algorithm obtains simultaneously a 
clustering of the feature vectors onto the codebook 
vectors and a nonlinear projection of the feature 
vectors from the high-dimensional input space onto 
the two-dimensional, ordered lattice formed by the 
reference vectors and their corresponding nodes. [2] 
 
 

 
fig 3. The feature vector X is closest to the lattice 
node marked BMU for Best Matching Unit. The BMU 
itself as well as its topological neighbours are 
moved closer to the input vector X in the input 
space i.e. the input vector attracts them. 
 
The Algorithm 
The feature vectors are presented to the SOM in 
random order, possibly several times. At each step 
the best-matching codebook vector (winner, also 
called best-matching unit or BMU) for the current 
data sample is searched. That is, for each node, j, on 
the grid, compute the Euclidian distance,  , 
between its reference vector and the input vector: 
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The winning reference vector and its neighbours on 
the lattice are updated by the following formula: 
 
 ( )( )jiijiji wxkjfww −+← ,η  

where 
       η is the learning rate 
       f(j,k) is the neighbourhood function 
 
The neighbourhood function is often taken as the 
Gaussian function, a bell-shaped function. The 
width of the neighbourhood function is decreased 
monotonically during the learning process. Initially 
a large number of reference vectors are updated for 
each feature vector and later only a few reference 
vectors are slightly adjusted. In the final stage the 
distribution of the SOM reference vectors in the 
input space roughly approximates the density of the 
input data. One important thing to notice is that the 
density approximation and the ordering of the data 
are competing goals between which the algorithm 
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makes a compromise that depends e.g. on the final 
width of the neighbourhood function. The number 
of clusters need not be the same as the number of 
nodes - several neighbouring nodes may form a 
cluster. When the algorithm reaches a stable state, 
each reference vector express a weighted average of 
the data points in that map region, particularly of 
data points mapped to the node associated with the 
reference vector. The neighbourhood function 
defines the size and shape of the weighting function. 
If the neighbourhood width is zero the algorithm is 
equal to the K-means clustering algorithm. 
 
We used The SOM TOOLBOX [4] in Matlab with 
default parameters, only varying the size of the 
SOM and the type of lattice used (for this report we 
used a rectangular lattice, but we have found the 
hexagonal lattice to be much better in some 
circumstances, but have not yet drawn any 
conclusions on what is best to use in our case). 
 
The quality of a SOM can be studied in many ways, 
we chose to study the Unified Distance Matrix (U-
Matrix) and Elastic Grid. The U-Matrix illustrates 
how close to each other the SOM nodes lie, due to 
the nature of the SOM this gives an idea of what 
clusters exists in the input data. The Elastic grid 
similarly gives an idea of how the SOM grid is 
stretched out in the input space (i.e. how it "looks") 
which also helps when trying to determine if any 
clusters have been found. 

VISUALIZATION 
To visualize the result we used the two-dimensional 
map that the SOM produces, K-means doesn't have 
that ability which is a drawback with K-means, you 
only get clusters with hopefully clear borders but 
with no information about how close the clusters 
are to each other or how elements inside the 
clusters relate to elements in other clusters.  

LABELLING 
A really great thing with the two-dimensional map 
is that you can label the nodes. We used different 
labels for the nodes for the same map depending on 
what we wanted to visualize and those where: 
Movie titles, common-and significant keywords, 
and movie genres. Labelling the nodes with 
keywords gives you a hint of why they where 
clustered together. The most interesting type of 
labelling is the keyword labelling in which we 
study the preprocessed list of keywords for each 
document in a SOM node and try to pick out 
significant keywords to use for labelling the SOM. 
 
Significant keywords labels 
The intention with this node labelling method is to 
show a set of keywords that are considered 
representative of all the documents that have the 

node as their BMU. This is done by creating a 
document collection that includes in addition to the 
BMU in question also all documents in directly 
neighbouring nodes.  Feature vectors are created for 
the document collection using TF-IDF as weighting 
and only using keywords that the BMU in question 
contains (in order to not label the BMU with 
keywords it doesn't contain). The sum of the TF-
IDF weights for each keyword is taken and the 5 
keywords with the highest TF-IDF sum is used as 
labels for the node. This gives a ok labelling of the 
nodes that can give a good idea of what documents 
a node contains and how the document of one node 
relates to its neighbour. 
 
Common keywords labels 
This approach is very simple to implement, the 
keywords all documents in a node have in common 
are used for labelling. This approach has the 
drawback that sometimes all documents in a node 
don't have any keyword in common (very common, 
perhaps 3 documents reside in a node and the first 
two share keywords and the last two share 
keywords, but not the first and last document), 
however it usually gives a very clear indication of 
why - for some nodes - documents end up together. 

RESULTS 
We started out using 95 IMDb movie plots and 97 
Usenet movie reviews as our dataset. These are 
very small datasets and conclusions drawn from 
them aren't likely to hold for large datasets. We 
wanted to analyze the results we get when using a 
small dataset to see if we get any good results, after 
this we would be willing to once again try large 
data sets. We compared the SOM clusters against 
IMDb's top ten recommendations for the movies 
"The Thing" and "Kill Bill: Vol.1".  We also let two 
humans, using only the movie titles from the 
dataset containing 95 IMDb movie plots, try to 
form clusters in the data. For our random sample 
we let our three year old niece pick some movies in 
her own way from the list of 95 movies (she drew 
some very pretty pictures! 3 ). See table 1 for a 
compilation of the recommendations the different 
sources gave for the movies. It is hard to draw any 
conclusions other than that the results vary, 
however our SOM clusters managed to cover the 
human clusters quite well. 
 

See fig 3-1 and fig 3-2 for a visualization of the 
SOM created for the dataset consisting of 95 IMDb 
movie plots. The first figure shows what documents 
the SOM nodes contain, the second figure uses a 
labelling method in which significant keywords for 
the documents in each SOM node is extracted and 
used for labelling. The keyword labelling gives an 
idea of why the documents have ended together in a 

                                                 
3 http://www.pcpinball.com/movsom/random_clustering.jpg 
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node (they're likely to share some of the significant 
keywords), and also how the documents relate to 
neighbouring node (which they're also likely to 
share significant keywords with). 
 

We also created a SOM for 97 Usenet movie 
reviews. The usenet movie reviews contain much 
more text than the IMDb movie plots. Our intention 
and expectation was that we would get better 
clusters using larger text documents. However, we 
found it hard to draw any conclusions about which 
SOM was better. Both SOM's seemed fine but 
neither contained any clear clusters as in neither 
case the U-Matrix indicated anything but a big 
cluster of all documents. The map neighbourhood's 
of documents was quite interesting to study though. 
Unfortunately the documents seemed to cluster 
together often on very useless words "go", "take", 
"try". Our hope had been that those seemingly non 
descriptive words would together be able to capture 
the movie's plot, for example we might have the 
following two movie plots: 
 

"zombies walk around not able to put two and two 
together"  
"vampires walk around not able to put two and 
two together" 
 

Those two plots contain two "colourful" words that 
describe the movies quite well, however zombies 
and vampires are two different words, our hope had 
been that the remaining rather non-descriptive 
words that both plots share exactly would cause 
them to be clustered together, unfortunately this 
doesn't seem to be the kind of end result we should 
expect, or the plots used were not "professionally" 
enough written such that this can happen. 
 

We also created a SOM consisting of 545 movies 
assembled by picking the top 50 movies in each of 

IMDb's 19 genres (the genres overlap). Our 
intention this time was to label the SOM nodes 
using the movie genres, if movies in a node were of 
different genres we would vote for which genre to 
label the node with (the most common one). The 
genre "drama" was unfortunately three time more 
common among the movies and we get many drama 
clusters, but there seemed to be a slight grouping of 
movies belonging to the same genre but we found it 
hard to draw any conclusions about the existence of 
genre clusters. 
 

We also created a SOM for 1029 IMDb plots and 
1000 Usenet movie reviews. Neither SOM's U-
Matrix indicated any clear clusters. The SOM's 
gave some few nice groupings of documents but 
mostly didn't give the type of recommendations we 
had hoped for. The documents seemed to again 
group on rather useless and non-descriptive words. 
 
The only time we used Random Projection to 
reduce the dimensionality of feature vectors was 
when we worked with the Usenet dataset of 1000 
movies. The document feature vectors were in this 
case of dimensionality 7833, when we tried to train 
a SOM on these feature vectors without first having 
reduced their dimensionality using random 
projection we ran out of memory (after 1 hour of 
computations). When we reduced the 
dimensionality to 314 using Random Projection we 
managed to train the SOM and get seemingly 
acceptable results. For all other datasets we were 
able to train the SOM without first projecting the 
feature vectors onto a lower dimension. We thought 
the SOM's we got from the non-random projected 
feature vectors were better, although they weren't 
useless in comparison.
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 Recommendation for Kill Bill Vol. 1 Recommendations for The Thing 
IMDb Kill Bill: Vol. 2 

Cidade de Deus         
Daredevil  
Freddy Vs. Jason         
Gangs of New York  
Godfather Trilogy: The        
Last Samurai, The         
Lord of the Rings: The Return  of the King 
The Gladiator  
Terminator 3: Rise of the Machines 

Alien³        
Alien: Resurrection 
Dreamcatcher  
Se7en      
Predator      
Predator 2        
Dawn of the Dead (2004)        
From Beyond        
Blade II       
Day of the Dead (1985) 

Human1 Big Lebowski, The  
Face/Off   
Fight Club  
Se7en 

Alien³  
Alien: Resurrection  
Dreamcatcher  
Alien 

Human2 Kill Bill: Vol. 2 
From Dusk Till Dawn  
 

Dreamcatcher 
Psycho (1960) 
Nightmare On Elm Street, A   
Exorcist, The 
Halloween 5   
Halloween H20: 20 Years Later   
Freddy Vs. Jason 

Random Cidade de Deus 
Daredevil  
Freddy Vs. Jason   
Catch Me If You Can  
Day of the Dead 
Devil's Advocate, The  
Face/Off  
Final Destination 
Forrest Gump 

Se7en   
Matrix, The   
Midnight   
Mulholland Dr.  
Ring, The  
RoboCop  
Rurôni Kenshin: Meiji kenkaku  roman tan  
Total Recall  

K-Means * Alien: Resurrection  
Se7en  
Alien³  
Kill Bill: Vol. 2  
Alien  
Aliens  
Matrix, The  
28 Days Later...  

Blade II  
Predator  
Predator 2  
Daredevil  
American Psycho 2: All American Girl  
Peeping Tom  
Cannibal Holocaust  
American Werewolf in London, An  

SOM 1 ** Predator 
Predator 2 
Kill Bill: Vol. 2 
close recommendations **** 
Terminator 3: Rise of the Machines 
Matrix, The 
Halloween 5 
Cannibal Holocaust 
Ring, The 
Se7en 
Wild at heart 

Dreamcatcher 
Alien 
First Blood 
Inferno 
Suspiria 
close recommendations **** 
Last Samurai, The 
Aliens 
American Psycho 2: All American Girl 
E tu vivrai nel terrore - L'aldilà 
Phenomena 
Gladiator 
Psycho 
Cruel Intentions 
Map of the World, A 
Videodrome 

SOM 2 
*** 

close recommendations **** 
Kill Bill Vol.2 
Gladiator 
From Dusk to Dawn 
Tenebre 
Under the Tuscan Sun 

Alien3 
Godfather Trilogy 
close recommendations **** 
Predator 2 
Aliens Resurrection 
Aliens 
Halloween 5 
From Dusk Till Dawn 3: The Hangman's Daughter 
Peeping Tom 
Donnie Darko 
Deranged 
Annie Hall 

table 2: Recommendations from different sources for two different movies. 
* 95 IMDb movies plots were clustered using K-Means into 10 clusters, initial cluster centroids were picked 
randomly among the feature vectors. 
** 95 IMDb movie plots were used to create a SOM of size 8x8. 
*** 97 USENET movie reviews were used to create a SOM of size 8x8. 
**** The SOM is able to recommend not only movies that it considers to be very similar to a specified movies, 
it can also recommend movies that it thinks are quite similar, i.e. "close recommendations" (these 
recommendations are found in nodes that are neighbours to the node containing i.e. The Thing). 
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- Nightmare 
On Elm 
Street, A 

   - American 
Werewolf in 
London, An 

- Se7en - Predator 
- Predator 2 
- Kill Bill: Vol. 1 
- Kill Bill: Vol. 2 

   - From Dusk 
Till Dawn 

- Twin 
Peaks: 
Fire Walk 
with Me 

- Batoru 
rowaiaru 

- From Dusk 
Till Dawn 3: 
The 
Hangman's 
Daughter 

   - Terminator 3: 
Rise of the 
Machines 
- Matrix, The 
- Halloween 5 
- Cannibal 
Holocaust 
- Ring, The 

- Wild at Heart    - Freddy Vs. 
Jason 

   

   - Dawn of the 
Dead 
- Lord of the 
Rings: The 
Return of the 
King, The 
- Blade Runner
- RoboCop 

- Blade II - Face/Off 
- Day of the 
Dead 

- Alien³ 
- Cidade de Deus
- Godfather 
Trilogy: 1901-
1980, The 

   - Vana 
espuma 
- Star Wars: 
Episode VI - 
Return of the 
Jedi 
- Basket Case 
- Funhouse, 
The 
- Forrest 
Gump 
- Superstition 

   

- Texas 
Chain Saw 
Massacre, 
The 

- Caged Heat 
- 28 Days 
Later... 

- Brood, 
The 
- Big 
Lebowski, 
The 

- Alien: 
Resurrection 
- From Beyond
- Blue Velvet 
- Angel 
- Truck Stop 
Women 
- Return of the 
Living Dead, 
The 
- Catch Me If 
You Can 
- Tenebre 

- Daredevil 
- Rurôni Kenshin: 
Meiji kenkaku 
roman tan: 
Tsuioku hen 
- Total Recall 
- Final 
Destination 
- Halloween H20: 
20 Years Later 
- Doors, The 
- Peeping Tom 
- Terms of 
Endearment 

- Gangs of 
New York 
- Mulholland 
Dr. 
- People vs. 
Larry Flynt, 
The 
- Play It 
Again, Sam 

- Lost 
Highway 

- Donnie 
Darko 
- Sleepy 
Hollow 

   - Artificial 
Intelligence: AI 

               - Annie 
Hall 

- Black 
Christmas 

   - Under the 
Tuscan Sun 

- Last 
Samurai, The 
- Aliens 
- American 
Psycho 2: All 
American Girl 
- E tu vivrai nel 
terrore - 
L'aldilà 
- Phenomena 

- Dreamcatcher 
- Thing, The 
- Alien 
- First Blood 
- Inferno 
- Suspiria 

- Gladiator 
- Psycho 
- Cruel 
Intentions 
- Map of the 
World, A 
- Videodrome 

- Manhattan - Fight 
Club 

- Exorcist, 
The 

- Midnight                - Twin 
Town 

- Blood 
Sucking 
Freaks 
- L.A. 
Confidential 

   - Deranged - 21 Grams    - Devil's 
Advocate, 
The 
- Sweet 
Hereafter, 
The 

   - Ice 
Storm, 
The 
- Anything 
Else 

fig 3-1. SOM for 95 IMDb movie plots with document labels as node labels. 
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- real 
- girl 
- friend 
- wear 
- nightmar 

   - human 
- world 
- american 
- die 
- surviv 

- hunt 
- world 
- time 
- take 
- victim 

- kill 
- hunt 
- bill 
- see 
- time 

   - famili 
- take 
- mysteri 
- priest 
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fig 3-2. SOM for 95 IMDb movie plots with significant keywors as node labels. 
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TOOLS 
We wrote a number of tools in order to aid the 
creation of the SOM, we also used a two MATLAB 
toolboxes, the statistics toolbox and the 
SOMTOOLBOX [4]. 
 
Text preprocessing tools 
The text preprocessing was implemented using a set 
of PHP scripts that can be called from the command 
line. Each script operates on a directory containing 
a set of text documents, the text documents all have 
numerical names which makes it easy to identify 
them. The text documents are preprocessed one by 
one by each script and written back to the directory 
they were found in (or to a separate directory, 
which enables analysis of how the documents 
change during the preprocessing). Each script 
performs a certain type of preprocessing, but 
accepts command line arguments that make them 
behave differently for different data sets. 
 
regexp.php 
Applies a set of regular expressions to each text file 
in a directory. The script takes as argument the path 
to a text file containing perl regular expressions, 
reads in these expressions and applies them to the 
text files in a directory. If no regular expression file 
is provided a default list of regular expressions is 
loaded that removes first punctuation and then all 
words containing non alpha characters (basically 
only words with numbers since punctuation has 
been removed). Regular expressions makes it easy 
to remove punctuation characters, words containing 
numbers, headers from usenet documents and so 
forth. 
 
shortwords.php 
Removes words of a specified length from each text 
file in a directory. The script takes as argument the 
minimum allowed length of words. Typically the 
minimum allowed word length is 2 and is only used 
to remove one letter words that are a sideffect of the 
removal of punctuations, i.e. "Guard's" without 
punctuation is "Guard", "s", so the "s" would be 
removed. Additionally word's such as "I" and "a" 
are removed, though those are stopwords and will 
be removed anyhow if a suitable stopwords list is 
applied. 
 
lowercase.php 
Lowercases all words in each text file in a directory. 
This is useful to perform before applying a 
stopwords list that doesn't consider the word case, 
otherwise it only make the textfiles look prettier. 
 
stopwords.php 
Removes words that are "stopwords" from each text 
file in a directory. The script takes as argument the 

path to a text file containing a list of words that are 
to be considered stopwords. 
 
stemming.php 
Applies porters stemming algorithm to all words in 
each text file in a directory. 
 
wordlist.php 
Creates a file containing statistics for all keywords 
in each text file in a directory. Is useful for studying 
how the text preprocessing reduces the amount of 
words in a document collection. 
 
Feature vectors matrices tools 
Feature vectors are stored in SOMPAK format, 
which is a plain ascii file containing information 
about a feature vectors matrix including all its 
weights and row and column labels. The SOMPAK 
format is compatible with the Matlab 
SOMTOOLBOX which has a functions for reading 
in files in this format. Operations on feature vectors 
matrices are done mostly using matlab precompiled 
executables which save the results in both 
SOMPAK format and Matlab's internal .mat format. 
 
docfv.php 
This PHP script is used to read in the final 
preprocessed text files in order to create a feature 
vectors matrix where each row corresponds to a 
document feature vector and each column 
corresponds to a keyword, the values in the matrix 
are the keywords frequency in each document. The 
document feature vector matrix is stored in 
SOMPAK format. 
 
transpose.exe 
A Matlab precompiled executable that takes as 
argument a SOMPAK file containing a feature 
vectors matrix, transposes it and writes the resulting 
matrix back to a file in SOMPAK format. The 
program is typically used to transpose a document 
feature vector matrix into a keyword feature vectors 
matrix where the rows correspond to a keyword and 
each column correspond to a document. 
 
tfidf.exe 
A Matlab precompiled executable that takes as 
argument a SOMPAK file containing a feature 
vectors matrix where the values are keyword 
frequencies. The matrix is converted to a matrix 
where the values are TF-IDF weights. 
 

normalize.exe 
A Matlab precompiled executable that takes as 
argument a SOMPAK file containing a feature 
vectors matrix and the name of the normalization 
method to be used. The possible normalization 
methods are var, range, log, logistic, histD, histC 
which are all described in the SOMTOOLBOX 
documentation for the som_normalize method. 
 
randprj.exe 
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A matlab precompiled executable that takes as 
argument a SOMPAK file containing a feature 
vectors matrix and the dimension to reduce the 
feature vectors matrix to. The program uses the 
Random Projection algorithm (with 5 ones on each 
row) to reduce the dimensionality of the feature 
vectors. 
 
Clustering tools 
Matlab m-files were used to create clusters based 
on a SOMPAK file containing a feature vectors 
matrix. It was more comfortable to work within 
matlab and use its graph window to visualize 
certain parts of the clustering than to create stand 
alone matlab executables that can't display any 
graph windows. 
 
gen_som.m 
This matlab m-file contains the function gen_som() 
which essentially takes as argument the path of a 
SOMPAK file containing a feature vectors matrix 
and the size of the SOM to create and what type of 
lattice to use. The function will use the 
SOMTOOLBOX to create the SOM and to generate 
a image of the SOM's U-matrix and Elastic Grid. 
Additionally the function will create a text file 
(som-bmus.data) containing the size of the SOM 
and which SOM node each feature vector has as 
Best Matching Unit (BMU), this file is the only file 
needed to visualize the SOM outside matlab. 
 
gen_kmeans.m 
This matlab m-file contains a function gen_kmeans() 
which essentially takes as argument the path of a 
SOMPAK file containing a feature vectors matrix 
and the number of clusters the kmeans algorithm is 
to find and what type of initialization and distance 
measure it is to use. The function will use the 
matlab kmeans() function to cluster the data and the 
matlab silhouette() function to generate a Silhouette 
plot for the clusters. Additionally the function will 
create a text file (kmeans.data) that contains each 
feature vector and what cluster it got assigned to, 
this file is the only file needed to study the 
clustering of the data outside matlab. 
 
Labelling tools 
The labelling of the SOM nodes and also of the K-
Means cluster is done using a PHP script that will 
operate on the files the gen_som.m and 
gen_kmeans.m m-files generate. 
 
label.php (som version) 
Reads in a som-bmus.data file that contains a list of 
document id's and their BMU, from that data the 
following set of labels files are created: 
 

• som-labels-bmucount.data: Specifies the label of 
each SOM node to be its BMU count, i.e. the number 
of times it is the Best Matching Unit for some 
document.  

• som-labels-doclabels.data: Specifies the label of each 
SOM node to be the name of the documents that have 
the node as their BMU. Each document's docid will 
be translated to a text string using a for the dataset 
specific index file that translated docid's to doclabels.  

• som-labels-commonkey.data: Specifies the label of 
each SOM node to be the set of keywords all the 
documents that have the node as their BMU have in 
common.  

• som-labels-signkey.data: Specifies the label of each 
SOM node to be the set of most significant keywords 
for the node, i.e. the set of keywords that best 
represent the documents that have the node as their 
BMU.  

• som-doclist.data: Additionally a file containing all 
the documents in the SOM is created, it contains for 
each docid, its corresponding doclabel and bmu. This 
is a useful reference list when visualizing the SOM.  

 
label.php (kmeans version) 
Reads in a kmeans.data file that contains a list of 
document id's and the cluster id of the cluster they 
belong to, from that data the a similar set of labels 
as that for the SOM is created. 
 
Visualization tools 
The visualization of the SOM and the K-Means 
clusters is done using a php scripts that generate 
dynamic html pages. The php scripts simply read in 
a labels file and display its contents in a nicely 
formatted html document, they contain no logic 
whatsoever otherwise. 

CONCLUSION 
Despite the fact that we improved the preprocessing 
of text and that we used documents with more text 
we couldn't draw the conclusion that we did better 
this time. Indeed, when we used K-mean we could 
get some nice clusters and for the smaller sets we 
got maps that showed some nice neighbourhoods of 
movies, but we never got a indication in the U-
Matrix that distinct clusters exist. We implemented 
a number of different labelling techniques in order 
to evaluate why documents end up together and 
found this very helpful and a good indication that it 
is valid to talk about neighbourhoods of documents 
that are similar. Perhaps these are the best results 
we can get without creating an extensive stopwords 
list that excludes all "bad" words, but as mentioned 
we might not want to do that. In any case a too 
extensive stopwords list might result in very biased 
clusters. An alternative to stopwords list we believe 
would be to only pick out words that are nouns 
during the preprocessing, which is something we 
believe that might be a interesting thing to try out. 
 
The SOM's created in this report can be found 
online at the MOVSOM4 website. 

                                                 
4 http://www.pcpinball.com/movsom/ 
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