
MOVSOM-II - analyzis and visualization of movieplot clusters
Stefan Gabrielsson and Sam Gabrielsson

{stga8437,saga7635}@student.uu.se
Uppsala University, Department of Information Technology (2004)

Abstract
In the paper [1] we presented MOVSOM , a fully
automatic movie recommender system with no need
of user preferences whatsoever. In contrast to
movie recommender systems like MovieLens1, that
are depended on user input in form of rankings of
movies or IMDB's 2 recommending system that
relies heavily on users recommendations and
keywords in order to be able to recommend movies,
MOVSOM doesn't require any input. Our aim was
to cluster movieplots and visualize the results in a
user friendly way and make it possible for a user to
select a movie they have seen and then be
recommended movies that are similar to that movie
in some way. Our belief that this was possible was
due to WEBSOM [2], which is a system for
clustering documents based on their content. In this
paper we present MOVSOM-II, a successor to
MOVSOM, but with better visualisation,
preprocessing techniques and analyzing of the
result.

INTRODUCTION
Previous work on clustering movies without user
preferences can be found in [1], [3]. Despite the
fact that they both fail in some sense, they both
suggest that to get better result, one should use
movieplots with more text and preprocessing
techniques that are more sophisticated. To achieve
this we have implemented some extra features in
MOVSOM [1]. The new features we have
implemented are the use of Porters stemming
algorithm, better stoplist (more domain specific)
and the use of TF-IDF as word frequency weights.
The data sets are also different, we use both Usenet
movie reviews (because they contain more text) and
IMDb's movieplots together with taglines and title.
We have also extended the possibility to analyze
the result we get, this includes labelling the nodes
in the SOM grid in different ways. The labeling
also helps to visualize the result in a more user
friendly way

THE VECTOR SPACE MODEL
We have chosen to use the vector-space model to
represent the data since it is a very common way to
represent such data and it is very simple to
implement. In the vector-space model each

1 http://movielens.umn.edu/
2 http://www.imdb.com/

movieplot is represented as a vector in a vector
space. Each dimension of the vector corresponds to
one keyword and the value represents the frequency
of the keyword. When the data is represented in this
way it is easy to calculate the similarity between the
vectors and if you know which vectors are similar
to each other, you can order those vectors together
in clusters.

FEATURE VECTOR MATRIX
To represent the frequency of the keywords we
have used the Term Frequency - Inverse Document
Frequency (TF-IDF), which is a better way than the
frequency formula used in [1]. The difference is
that the previous formula was too sensitive to word
spamming and didn't weigh in both the importance
of the keyword in both the movieplot and the
movieplot collection, it only considered how
important the keyword was in the movieplot
collection.

The formula for calculating the weight for a
keyword is:

iijij IDFTFw ⋅=
where the measure of how important the keyword

 is in document j is ik

zjz

ij
ij f

f
TF

max
=

=ijf number of times keyword appears in

document
ik

jd
and the measure of how important the keyword is in
the document collection is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
i n

NIDF lg

=N number of documents in whole collection
=in number of documents containing keyword ik

 1

Suppose we have a finite set of keywords
 },...,,{ 21 MkkkK =

and a finite set of documents },...,,{ 21 NdddD =
then the document frequency matrix will look as
follows where is the keywords TF-IDF weight: ijw

MNMM

N

N

wwd

wwd
kk

L

MOMM

L

1

1111

1 ...

NORMALIZATION
To avoid domination of some dimension when we
calculate the similarity of the vectors, their values
must be normalized. There are many ways of
normalizing a feature vectors matrix, we chose to
normalize the variance [4] as it is a simple
normalization method that is well used. To
normalize the variance the standard deviation and
mean value for each column is calculated and each
value in the feature vectors matrix normalized using
the formula:

x

xxx
σ
−

='

where x is the mean and xσ the standard deviation

for the column that value x is in.

DIMENSION REDUCTION
Term frequency matrices are typically of very high
dimensionality (of orders of several thousands) and
are very sparse (a very small percentage of the
attributes of the feature vectors are non-zero), and
this leads to certain problems for clustering
algorithms. The problems is that it is
computationally heavy and time consuming to work
with feature vectors of high dimensions. Another
problem is that clustering algorithms that uses
Euclidian distances measures wont do so well as in
high dimensions distances don't vary very much.
Typically one solves this problem with the help of
dimension reduction techniques. The one we have
chosen is called random projection and is described
in [5], [6], [7]. The main advantage with the use of
random projection is that it is much faster than
other well known and used techniques such as
Principal Component Analysis and Single Value
Decomposition. Empirical tests [5], [6], [7] have
shown that random projection does well in
comparison with the PCA and SVD techniques.

fig. 1 illustrates the process of Random Projection.

Consider a Feature Vector matrix (N being
number of movieplots, and d number of keywords
extracted in our case) and a Random Matrix
(where k is the desired new dimension of the
feature vectors matrix). If k is at least of size
100,according to [5], then the relation between the
projected movieplots in the resulting matrix
are a very good approximation of the corresponding
relation to the original movieplots in the original
matrix . Each row in the Random Matrix

 consists of randomly generated values,
empirical tests in [5], [6] have showed that it is
enough to use 5 uniformly distributed 1's on each
row and zero's everywhere else, to get a good
approximation.

dNF ×

kdR ×

kNFP ×

dNF ×

kdR ×

The projection is thus a simple matrix
multiplication: = x kNFP × dNF × kdR ×

SIMILARITY MEASURE
To be able to determine if two vectors are similar in
some sense, we need to define a similarity function.
Two very common similarity functions are the
Euclidian distance and the cosine similarity
function.

Euclidian distance
The similarity between two documents is their
distance to each other, if the distance is near zero
they are considered similar and if the distance is
close to one they are considered different.
The distance between two documents is calculated
with the following formula:

dist() = ji dd , ()∑
=

−
k

h
jhih dd

1

2

 2

jd

Cosine similarity
The similarity between two documents is the cosine
of the angle between them (see fig 2), if the cosine
of the angle is close to one they are considered
similar and if the cosine of the angle is close to zero
they are considered different.
The cosine between two documents is calculated
with the following formula:

sim() = ji dd ,
()

⎟
⎠

⎞
⎜
⎝

⎛
⋅

⋅

∑ ∑

∑

= =

=

k

h

k

h
jhih

k

h
jhih

dd

dd

1 1

22

1

id

θ

and since ∑ is the same as the standard

vector dot product and

=

⋅
k

h
jhih dd

1

ji dd
rr

⋅ ()∑
=

k

h
ihd

1

2 is the

same as the norm id , we get the following

formula: sim() = ji dd
rr

,
ji

ji

dd

dd

⋅

⋅
rr

and that is the same as: =θcos
ji

ji

dd

dd

⋅

⋅
rr

which is the cosine formula.

fig 2. The cosine sim
feature vectors is th
them.

TEXT PREPR
Before we can con
the data has to be pr
preprocessing of tex
work is done. This is
and the purpose of
nonsense and unimp
dimension of the do
get very big and very
show the number
preprocessing step h
plots.

Text preprocessing
step

#Keywords* #Words**

Text cleansing 2612 8677
Removal of short
words

2597 8247

Lowercasing words 2597 8247
Removing stopwords1 2395 4399
Removing stopwords2 2335 4133
Stemming 1964 4133
Word reduction 623 2595
table 1: Preprocessing 97 IMDb plots.
* Number of unique words in the document
collection.
** Total number of words in the document
collection.

Text cleansing
Removes punctuation characters such as \ ' " ´ ` / . ,
= : ; () { } ! ? -] and words containing characters
other than letters.

Removal of shortwords
Gets rid of short words that the text cleansing
leaves, i.e. removing the apostrophe from "Guard's"
leaves the short word "s" that should be removed.
We do not worry about accidentally removing any
significant short words as we don't know of any.

Lowercasing words
Make documents look pretty by lowercasing all
words.

Removing stopwords1
A generic text stopwords list is applied that
removes words such as "the", "a" etc.

Removing stopwords2
A domain specific stopwords list is applied that
removes such words as "movie", "actor" and so
forth that we don't believe contribute to describing a

ilarity between two document
e cosine of the angle between

OCESSING
struct our vector-space model,
epared for it, and this is called
t and this is where the most
 done in several different steps
 it is to clean the text from
ortant words and to reduce the
cument vector since it tends to
 sparse. As an example, table 1
 of word left after each
as been performed on 95 IMDb

movie. This list isn't complete and could be more
extensive, though we hesitate to make it bigger than
necessary initially before we are more certain about
its necessity.

Stemming
Porters stemming algorithm is applied to (hopefully)
stem words to their base stem, e.g. "zombie" and
"zombies" might be stemmed to "zombi" which is
good, however "anime" and "animal" might get
stemmed to "anim" which is bad.

Word reduction
Removes words that occur to infrequently or too
frequently in the document collection. This helps
get down the dimensions which is necessary and
thus has tradeoffs and removes word that can't
possibly contribute to the clustering of document.
In the above example we only removed words that
only occurred in one documents.

3

CLUSTERING ALGORITHMS
We have used two different cluster algorithms: K-
means and Kohonen's self-organizing map.

K-Means
K-Means is an iterative clustering algorithm in
which items are moved among set of clusters until
the desired set is reached. The algorithm consists of
the following steps:
1. Choose K initial cluster randomly (representing
the K movieplots) and calculate the mean for each
cluster.
2. Present every movieplot vector to the algorithm
and calculate the similarity between the movieplot
vector and the centre of each cluster. Assign the
movieplot to the cluster with greatest similarity.
3. Recalculate the means for every cluster.
4. If the means are different from previous step,
repeat step 2-4. Otherwise terminate the algorithm.

We used Matlab's own K-means algorithm and we
used cosine as our similarity function.

The quality of K-Means clusters can be studied by
creating a silhouette plot that shows how much the
clusters created are "separated" from each other .

Kohonen's self-organizing map (SOM)
The trained SOM is a two-dimensional, ordered
lattice (a simple grid) where each node in the lattice
represents a set of feature vectors in input space.
Nodes in the lattice that are neighbours are also a
neighbours in the input space.

The SOM algorithm places a set of reference
vectors into the input space so that the feature
vectors are approximated by the reference vectors.
The reference vectors are constrained to a two-
dimensional regular grid that forms an "elastic
network" which follows the distribution of the
training data in a nonlinear fashion.

The SOM algorithm obtains simultaneously a
clustering of the feature vectors onto the codebook
vectors and a nonlinear projection of the feature
vectors from the high-dimensional input space onto
the two-dimensional, ordered lattice formed by the
reference vectors and their corresponding nodes. [2]

fig 3. The feature vector X is closest to the lattice
node marked BMU for Best Matching Unit. The BMU
itself as well as its topological neighbours are
moved closer to the input vector X in the input
space i.e. the input vector attracts them.

The Algorithm
The feature vectors are presented to the SOM in
random order, possibly several times. At each step
the best-matching codebook vector (winner, also
called best-matching unit or BMU) for the current
data sample is searched. That is, for each node, j, on
the grid, compute the Euclidian distance, ,
between its reference vector and the input vector:

jd

jd = ()∑
=

−
N

i
jii wx

1

2

where
 N is the number of inputs
 is the value of input i ix
 is the reference vector from input i to node
j

jiw

The winning reference vector and its neighbours on
the lattice are updated by the following formula:

 ()()jiijiji wxkjfww −+← ,η

where
 η is the learning rate
 f(j,k) is the neighbourhood function

The neighbourhood function is often taken as the
Gaussian function, a bell-shaped function. The
width of the neighbourhood function is decreased
monotonically during the learning process. Initially
a large number of reference vectors are updated for
each feature vector and later only a few reference
vectors are slightly adjusted. In the final stage the
distribution of the SOM reference vectors in the
input space roughly approximates the density of the
input data. One important thing to notice is that the
density approximation and the ordering of the data
are competing goals between which the algorithm

 4

makes a compromise that depends e.g. on the final
width of the neighbourhood function. The number
of clusters need not be the same as the number of
nodes - several neighbouring nodes may form a
cluster. When the algorithm reaches a stable state,
each reference vector express a weighted average of
the data points in that map region, particularly of
data points mapped to the node associated with the
reference vector. The neighbourhood function
defines the size and shape of the weighting function.
If the neighbourhood width is zero the algorithm is
equal to the K-means clustering algorithm.

We used The SOM TOOLBOX [4] in Matlab with
default parameters, only varying the size of the
SOM and the type of lattice used (for this report we
used a rectangular lattice, but we have found the
hexagonal lattice to be much better in some
circumstances, but have not yet drawn any
conclusions on what is best to use in our case).

The quality of a SOM can be studied in many ways,
we chose to study the Unified Distance Matrix (U-
Matrix) and Elastic Grid. The U-Matrix illustrates
how close to each other the SOM nodes lie, due to
the nature of the SOM this gives an idea of what
clusters exists in the input data. The Elastic grid
similarly gives an idea of how the SOM grid is
stretched out in the input space (i.e. how it "looks")
which also helps when trying to determine if any
clusters have been found.

VISUALIZATION
To visualize the result we used the two-dimensional
map that the SOM produces, K-means doesn't have
that ability which is a drawback with K-means, you
only get clusters with hopefully clear borders but
with no information about how close the clusters
are to each other or how elements inside the
clusters relate to elements in other clusters.

LABELLING
A really great thing with the two-dimensional map
is that you can label the nodes. We used different
labels for the nodes for the same map depending on
what we wanted to visualize and those where:
Movie titles, common-and significant keywords,
and movie genres. Labelling the nodes with
keywords gives you a hint of why they where
clustered together. The most interesting type of
labelling is the keyword labelling in which we
study the preprocessed list of keywords for each
document in a SOM node and try to pick out
significant keywords to use for labelling the SOM.

Significant keywords labels
The intention with this node labelling method is to
show a set of keywords that are considered
representative of all the documents that have the

node as their BMU. This is done by creating a
document collection that includes in addition to the
BMU in question also all documents in directly
neighbouring nodes. Feature vectors are created for
the document collection using TF-IDF as weighting
and only using keywords that the BMU in question
contains (in order to not label the BMU with
keywords it doesn't contain). The sum of the TF-
IDF weights for each keyword is taken and the 5
keywords with the highest TF-IDF sum is used as
labels for the node. This gives a ok labelling of the
nodes that can give a good idea of what documents
a node contains and how the document of one node
relates to its neighbour.

Common keywords labels
This approach is very simple to implement, the
keywords all documents in a node have in common
are used for labelling. This approach has the
drawback that sometimes all documents in a node
don't have any keyword in common (very common,
perhaps 3 documents reside in a node and the first
two share keywords and the last two share
keywords, but not the first and last document),
however it usually gives a very clear indication of
why - for some nodes - documents end up together.

RESULTS
We started out using 95 IMDb movie plots and 97
Usenet movie reviews as our dataset. These are
very small datasets and conclusions drawn from
them aren't likely to hold for large datasets. We
wanted to analyze the results we get when using a
small dataset to see if we get any good results, after
this we would be willing to once again try large
data sets. We compared the SOM clusters against
IMDb's top ten recommendations for the movies
"The Thing" and "Kill Bill: Vol.1". We also let two
humans, using only the movie titles from the
dataset containing 95 IMDb movie plots, try to
form clusters in the data. For our random sample
we let our three year old niece pick some movies in
her own way from the list of 95 movies (she drew
some very pretty pictures! 3). See table 1 for a
compilation of the recommendations the different
sources gave for the movies. It is hard to draw any
conclusions other than that the results vary,
however our SOM clusters managed to cover the
human clusters quite well.

See fig 3-1 and fig 3-2 for a visualization of the
SOM created for the dataset consisting of 95 IMDb
movie plots. The first figure shows what documents
the SOM nodes contain, the second figure uses a
labelling method in which significant keywords for
the documents in each SOM node is extracted and
used for labelling. The keyword labelling gives an
idea of why the documents have ended together in a

3 http://www.pcpinball.com/movsom/random_clustering.jpg

 5

node (they're likely to share some of the significant
keywords), and also how the documents relate to
neighbouring node (which they're also likely to
share significant keywords with).

We also created a SOM for 97 Usenet movie
reviews. The usenet movie reviews contain much
more text than the IMDb movie plots. Our intention
and expectation was that we would get better
clusters using larger text documents. However, we
found it hard to draw any conclusions about which
SOM was better. Both SOM's seemed fine but
neither contained any clear clusters as in neither
case the U-Matrix indicated anything but a big
cluster of all documents. The map neighbourhood's
of documents was quite interesting to study though.
Unfortunately the documents seemed to cluster
together often on very useless words "go", "take",
"try". Our hope had been that those seemingly non
descriptive words would together be able to capture
the movie's plot, for example we might have the
following two movie plots:

"zombies walk around not able to put two and two
together"
"vampires walk around not able to put two and
two together"

Those two plots contain two "colourful" words that
describe the movies quite well, however zombies
and vampires are two different words, our hope had
been that the remaining rather non-descriptive
words that both plots share exactly would cause
them to be clustered together, unfortunately this
doesn't seem to be the kind of end result we should
expect, or the plots used were not "professionally"
enough written such that this can happen.

We also created a SOM consisting of 545 movies
assembled by picking the top 50 movies in each of

IMDb's 19 genres (the genres overlap). Our
intention this time was to label the SOM nodes
using the movie genres, if movies in a node were of
different genres we would vote for which genre to
label the node with (the most common one). The
genre "drama" was unfortunately three time more
common among the movies and we get many drama
clusters, but there seemed to be a slight grouping of
movies belonging to the same genre but we found it
hard to draw any conclusions about the existence of
genre clusters.

We also created a SOM for 1029 IMDb plots and
1000 Usenet movie reviews. Neither SOM's U-
Matrix indicated any clear clusters. The SOM's
gave some few nice groupings of documents but
mostly didn't give the type of recommendations we
had hoped for. The documents seemed to again
group on rather useless and non-descriptive words.

The only time we used Random Projection to
reduce the dimensionality of feature vectors was
when we worked with the Usenet dataset of 1000
movies. The document feature vectors were in this
case of dimensionality 7833, when we tried to train
a SOM on these feature vectors without first having
reduced their dimensionality using random
projection we ran out of memory (after 1 hour of
computations). When we reduced the
dimensionality to 314 using Random Projection we
managed to train the SOM and get seemingly
acceptable results. For all other datasets we were
able to train the SOM without first projecting the
feature vectors onto a lower dimension. We thought
the SOM's we got from the non-random projected
feature vectors were better, although they weren't
useless in comparison.

 6

 Recommendation for Kill Bill Vol. 1 Recommendations for The Thing
IMDb Kill Bill: Vol. 2

Cidade de Deus
Daredevil
Freddy Vs. Jason
Gangs of New York
Godfather Trilogy: The
Last Samurai, The
Lord of the Rings: The Return of the King
The Gladiator
Terminator 3: Rise of the Machines

Alien³
Alien: Resurrection
Dreamcatcher
Se7en
Predator
Predator 2
Dawn of the Dead (2004)
From Beyond
Blade II
Day of the Dead (1985)

Human1 Big Lebowski, The
Face/Off
Fight Club
Se7en

Alien³
Alien: Resurrection
Dreamcatcher
Alien

Human2 Kill Bill: Vol. 2
From Dusk Till Dawn

Dreamcatcher
Psycho (1960)
Nightmare On Elm Street, A
Exorcist, The
Halloween 5
Halloween H20: 20 Years Later
Freddy Vs. Jason

Random Cidade de Deus
Daredevil
Freddy Vs. Jason
Catch Me If You Can
Day of the Dead
Devil's Advocate, The
Face/Off
Final Destination
Forrest Gump

Se7en
Matrix, The
Midnight
Mulholland Dr.
Ring, The
RoboCop
Rurôni Kenshin: Meiji kenkaku roman tan
Total Recall

K-Means * Alien: Resurrection
Se7en
Alien³
Kill Bill: Vol. 2
Alien
Aliens
Matrix, The
28 Days Later...

Blade II
Predator
Predator 2
Daredevil
American Psycho 2: All American Girl
Peeping Tom
Cannibal Holocaust
American Werewolf in London, An

SOM 1 ** Predator
Predator 2
Kill Bill: Vol. 2
close recommendations ****
Terminator 3: Rise of the Machines
Matrix, The
Halloween 5
Cannibal Holocaust
Ring, The
Se7en
Wild at heart

Dreamcatcher
Alien
First Blood
Inferno
Suspiria
close recommendations ****
Last Samurai, The
Aliens
American Psycho 2: All American Girl
E tu vivrai nel terrore - L'aldilà
Phenomena
Gladiator
Psycho
Cruel Intentions
Map of the World, A
Videodrome

SOM 2

close recommendations ****
Kill Bill Vol.2
Gladiator
From Dusk to Dawn
Tenebre
Under the Tuscan Sun

Alien3
Godfather Trilogy
close recommendations ****
Predator 2
Aliens Resurrection
Aliens
Halloween 5
From Dusk Till Dawn 3: The Hangman's Daughter
Peeping Tom
Donnie Darko
Deranged
Annie Hall

table 2: Recommendations from different sources for two different movies.
* 95 IMDb movies plots were clustered using K-Means into 10 clusters, initial cluster centroids were picked
randomly among the feature vectors.
** 95 IMDb movie plots were used to create a SOM of size 8x8.
*** 97 USENET movie reviews were used to create a SOM of size 8x8.
**** The SOM is able to recommend not only movies that it considers to be very similar to a specified movies,
it can also recommend movies that it thinks are quite similar, i.e. "close recommendations" (these
recommendations are found in nodes that are neighbours to the node containing i.e. The Thing).

 7

- Nightmare
On Elm
Street, A

 - American
Werewolf in
London, An

- Se7en - Predator
- Predator 2
- Kill Bill: Vol. 1
- Kill Bill: Vol. 2

 - From Dusk
Till Dawn

- Twin
Peaks:
Fire Walk
with Me

- Batoru
rowaiaru

- From Dusk
Till Dawn 3:
The
Hangman's
Daughter

 - Terminator 3:
Rise of the
Machines
- Matrix, The
- Halloween 5
- Cannibal
Holocaust
- Ring, The

- Wild at Heart - Freddy Vs.
Jason

 - Dawn of the
Dead
- Lord of the
Rings: The
Return of the
King, The
- Blade Runner
- RoboCop

- Blade II - Face/Off
- Day of the
Dead

- Alien³
- Cidade de Deus
- Godfather
Trilogy: 1901-
1980, The

 - Vana
espuma
- Star Wars:
Episode VI -
Return of the
Jedi
- Basket Case
- Funhouse,
The
- Forrest
Gump
- Superstition

- Texas
Chain Saw
Massacre,
The

- Caged Heat
- 28 Days
Later...

- Brood,
The
- Big
Lebowski,
The

- Alien:
Resurrection
- From Beyond
- Blue Velvet
- Angel
- Truck Stop
Women
- Return of the
Living Dead,
The
- Catch Me If
You Can
- Tenebre

- Daredevil
- Rurôni Kenshin:
Meiji kenkaku
roman tan:
Tsuioku hen
- Total Recall
- Final
Destination
- Halloween H20:
20 Years Later
- Doors, The
- Peeping Tom
- Terms of
Endearment

- Gangs of
New York
- Mulholland
Dr.
- People vs.
Larry Flynt,
The
- Play It
Again, Sam

- Lost
Highway

- Donnie
Darko
- Sleepy
Hollow

 - Artificial
Intelligence: AI

 - Annie
Hall

- Black
Christmas

 - Under the
Tuscan Sun

- Last
Samurai, The
- Aliens
- American
Psycho 2: All
American Girl
- E tu vivrai nel
terrore -
L'aldilà
- Phenomena

- Dreamcatcher
- Thing, The
- Alien
- First Blood
- Inferno
- Suspiria

- Gladiator
- Psycho
- Cruel
Intentions
- Map of the
World, A
- Videodrome

- Manhattan - Fight
Club

- Exorcist,
The

- Midnight - Twin
Town

- Blood
Sucking
Freaks
- L.A.
Confidential

 - Deranged - 21 Grams - Devil's
Advocate,
The
- Sweet
Hereafter,
The

 - Ice
Storm,
The
- Anything
Else

fig 3-1. SOM for 95 IMDb movie plots with document labels as node labels.

 8

- real
- girl
- friend
- wear
- nightmar

 - human
- world
- american
- die
- surviv

- hunt
- world
- time
- take
- victim

- kill
- hunt
- bill
- see
- time

 - famili
- take
- mysteri
- priest
- mexico

- life
- town
- twin
- seri
- follow

- forc
- friend
- last
- wear
- island

- human
- vampir
- forc
- surviv
- isol

 - world
- see
- time
- american
- life

- hunt
- killer
- goe
- hire
- mother

 - take
- year
- decid
- dream
- jason

 - human
- futur
- blade
- forc
- man

- human
- world
- vampir
- blade
- prei

- take
- live
- day
- dead
- scientist

- live
- kill
- world
- alien
- human

 - life
- murder
- young
- death
- go

- end
- home
- power
- famili
- eat

- futur
- day
- big
- take
- escap

- man
- big
- day
- daughter
- real

- take
- dead
- live
- scientist
- human

- take
- live
- friend
- dead
- scientist

- murder
- young
- new
- take
- death

- life
- murder
- young
- death
- mysteri

- life
- death
- go
- nearbi
- famili

 - home
- old
- real
- life
- end

 - meet
- relationship
- love
- romant
- serv

- girl
- old
- dead
- make
- polic

 - decid
- home
- friend
- life
- old

- friend
- young
- school
- time
- discov

- school
- friend
- life
- young
- discov

- friend
- school
- life
- love
- new

- love
- live
- meet
- relationship
- friend

- meet
- live
- go
- club
- idea

- girl
- littl
- sick
- old
- make

- girl
- polic
- home
- mother
- dead

 - live
- love
- try
- help
- young

- girl
- differ
- real
- polic
- littl

 - take
- live
- mother
- di
- unnatur

- marri
- world
- mother
- learn
- live

 - famili
- young
- join
- lose
- lawyer

 - citi
- try
- help
- life
- new

fig 3-2. SOM for 95 IMDb movie plots with significant keywors as node labels.

 9

TOOLS
We wrote a number of tools in order to aid the
creation of the SOM, we also used a two MATLAB
toolboxes, the statistics toolbox and the
SOMTOOLBOX [4].

Text preprocessing tools
The text preprocessing was implemented using a set
of PHP scripts that can be called from the command
line. Each script operates on a directory containing
a set of text documents, the text documents all have
numerical names which makes it easy to identify
them. The text documents are preprocessed one by
one by each script and written back to the directory
they were found in (or to a separate directory,
which enables analysis of how the documents
change during the preprocessing). Each script
performs a certain type of preprocessing, but
accepts command line arguments that make them
behave differently for different data sets.

regexp.php
Applies a set of regular expressions to each text file
in a directory. The script takes as argument the path
to a text file containing perl regular expressions,
reads in these expressions and applies them to the
text files in a directory. If no regular expression file
is provided a default list of regular expressions is
loaded that removes first punctuation and then all
words containing non alpha characters (basically
only words with numbers since punctuation has
been removed). Regular expressions makes it easy
to remove punctuation characters, words containing
numbers, headers from usenet documents and so
forth.

shortwords.php
Removes words of a specified length from each text
file in a directory. The script takes as argument the
minimum allowed length of words. Typically the
minimum allowed word length is 2 and is only used
to remove one letter words that are a sideffect of the
removal of punctuations, i.e. "Guard's" without
punctuation is "Guard", "s", so the "s" would be
removed. Additionally word's such as "I" and "a"
are removed, though those are stopwords and will
be removed anyhow if a suitable stopwords list is
applied.

lowercase.php
Lowercases all words in each text file in a directory.
This is useful to perform before applying a
stopwords list that doesn't consider the word case,
otherwise it only make the textfiles look prettier.

stopwords.php
Removes words that are "stopwords" from each text
file in a directory. The script takes as argument the

path to a text file containing a list of words that are
to be considered stopwords.

stemming.php
Applies porters stemming algorithm to all words in
each text file in a directory.

wordlist.php
Creates a file containing statistics for all keywords
in each text file in a directory. Is useful for studying
how the text preprocessing reduces the amount of
words in a document collection.

Feature vectors matrices tools
Feature vectors are stored in SOMPAK format,
which is a plain ascii file containing information
about a feature vectors matrix including all its
weights and row and column labels. The SOMPAK
format is compatible with the Matlab
SOMTOOLBOX which has a functions for reading
in files in this format. Operations on feature vectors
matrices are done mostly using matlab precompiled
executables which save the results in both
SOMPAK format and Matlab's internal .mat format.

docfv.php
This PHP script is used to read in the final
preprocessed text files in order to create a feature
vectors matrix where each row corresponds to a
document feature vector and each column
corresponds to a keyword, the values in the matrix
are the keywords frequency in each document. The
document feature vector matrix is stored in
SOMPAK format.

transpose.exe
A Matlab precompiled executable that takes as
argument a SOMPAK file containing a feature
vectors matrix, transposes it and writes the resulting
matrix back to a file in SOMPAK format. The
program is typically used to transpose a document
feature vector matrix into a keyword feature vectors
matrix where the rows correspond to a keyword and
each column correspond to a document.

tfidf.exe
A Matlab precompiled executable that takes as
argument a SOMPAK file containing a feature
vectors matrix where the values are keyword
frequencies. The matrix is converted to a matrix
where the values are TF-IDF weights.

normalize.exe
A Matlab precompiled executable that takes as
argument a SOMPAK file containing a feature
vectors matrix and the name of the normalization
method to be used. The possible normalization
methods are var, range, log, logistic, histD, histC
which are all described in the SOMTOOLBOX
documentation for the som_normalize method.

randprj.exe

 10

A matlab precompiled executable that takes as
argument a SOMPAK file containing a feature
vectors matrix and the dimension to reduce the
feature vectors matrix to. The program uses the
Random Projection algorithm (with 5 ones on each
row) to reduce the dimensionality of the feature
vectors.

Clustering tools
Matlab m-files were used to create clusters based
on a SOMPAK file containing a feature vectors
matrix. It was more comfortable to work within
matlab and use its graph window to visualize
certain parts of the clustering than to create stand
alone matlab executables that can't display any
graph windows.

gen_som.m
This matlab m-file contains the function gen_som()
which essentially takes as argument the path of a
SOMPAK file containing a feature vectors matrix
and the size of the SOM to create and what type of
lattice to use. The function will use the
SOMTOOLBOX to create the SOM and to generate
a image of the SOM's U-matrix and Elastic Grid.
Additionally the function will create a text file
(som-bmus.data) containing the size of the SOM
and which SOM node each feature vector has as
Best Matching Unit (BMU), this file is the only file
needed to visualize the SOM outside matlab.

gen_kmeans.m
This matlab m-file contains a function gen_kmeans()
which essentially takes as argument the path of a
SOMPAK file containing a feature vectors matrix
and the number of clusters the kmeans algorithm is
to find and what type of initialization and distance
measure it is to use. The function will use the
matlab kmeans() function to cluster the data and the
matlab silhouette() function to generate a Silhouette
plot for the clusters. Additionally the function will
create a text file (kmeans.data) that contains each
feature vector and what cluster it got assigned to,
this file is the only file needed to study the
clustering of the data outside matlab.

Labelling tools
The labelling of the SOM nodes and also of the K-
Means cluster is done using a PHP script that will
operate on the files the gen_som.m and
gen_kmeans.m m-files generate.

label.php (som version)
Reads in a som-bmus.data file that contains a list of
document id's and their BMU, from that data the
following set of labels files are created:

• som-labels-bmucount.data: Specifies the label of
each SOM node to be its BMU count, i.e. the number
of times it is the Best Matching Unit for some
document.

• som-labels-doclabels.data: Specifies the label of each
SOM node to be the name of the documents that have
the node as their BMU. Each document's docid will
be translated to a text string using a for the dataset
specific index file that translated docid's to doclabels.

• som-labels-commonkey.data: Specifies the label of
each SOM node to be the set of keywords all the
documents that have the node as their BMU have in
common.

• som-labels-signkey.data: Specifies the label of each
SOM node to be the set of most significant keywords
for the node, i.e. the set of keywords that best
represent the documents that have the node as their
BMU.

• som-doclist.data: Additionally a file containing all
the documents in the SOM is created, it contains for
each docid, its corresponding doclabel and bmu. This
is a useful reference list when visualizing the SOM.

label.php (kmeans version)
Reads in a kmeans.data file that contains a list of
document id's and the cluster id of the cluster they
belong to, from that data the a similar set of labels
as that for the SOM is created.

Visualization tools
The visualization of the SOM and the K-Means
clusters is done using a php scripts that generate
dynamic html pages. The php scripts simply read in
a labels file and display its contents in a nicely
formatted html document, they contain no logic
whatsoever otherwise.

CONCLUSION
Despite the fact that we improved the preprocessing
of text and that we used documents with more text
we couldn't draw the conclusion that we did better
this time. Indeed, when we used K-mean we could
get some nice clusters and for the smaller sets we
got maps that showed some nice neighbourhoods of
movies, but we never got a indication in the U-
Matrix that distinct clusters exist. We implemented
a number of different labelling techniques in order
to evaluate why documents end up together and
found this very helpful and a good indication that it
is valid to talk about neighbourhoods of documents
that are similar. Perhaps these are the best results
we can get without creating an extensive stopwords
list that excludes all "bad" words, but as mentioned
we might not want to do that. In any case a too
extensive stopwords list might result in very biased
clusters. An alternative to stopwords list we believe
would be to only pick out words that are nouns
during the preprocessing, which is something we
believe that might be a interesting thing to try out.

The SOM's created in this report can be found
online at the MOVSOM4 website.

4 http://www.pcpinball.com/movsom/

 11

REFERENCES
[1] : S & S. Gabrielsson, "Movie clustering using the self-organizing map: MOVSOM"
[2] : K. Lagus, "Text Mining with the WEBSOM". Acta Polytechnia Scandinavia,
 Mathematics and Computing Series No. 110, Espoo 2000
[3]: M.Fleischman, E.Hovy, "Recommendations without user preferences: a natural language
 processing approach
[4]: J.Vesanto, J.Himberg,E.Alhoniemi & J.Parhankangas, "SOM Toolbox for Matlab 5",
 Report A57, April 2000
[5]: Kohonen, T. ,"Self-organization of very large document collections: State of the art."
 In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th
 International Conference on Artificial Neural Networks, volume 1, pages 65-74. Springer,
 London, (1998).
[6]: T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V. Paatero, and A. Saarela.
 "Self Organization of a Massive Document Collection." IEEE Transactions on Neural
 Networks, Special Issue on Neural Networks for Data Mining and Knowledge Discovery,
 volume 11, number 3, pages 574-585. May 2000.
[7]: E. Bingham and M. Heikki ,"Random projection in dimensionality reduction: Application
 to image and text data" Laboratory of Computer and Information Science, Helsinki
 University of Technology, Finland.

 12

	INTRODUCTION
	THE VECTOR SPACE MODEL
	FEATURE VECTOR MATRIX
	NORMALIZATION
	DIMENSION REDUCTION
	SIMILARITY MEASURE
	TEXT PREPROCESSING
	CLUSTERING ALGORITHMS
	VISUALIZATION
	LABELLING
	RESULTS
	TOOLS
	CONCLUSION
	REFERENCES

